Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China.
Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.
Br J Pharmacol. 2018 Apr;175(8):1190-1204. doi: 10.1111/bph.13971. Epub 2017 Sep 5.
Atherosclerosis results from a maladaptive inflammatory response initiated by the intramural retention of LDL in susceptible areas of the arterial vasculature. The ω-3 polyunsaturated fatty acids (ω-3) have protective effects in atherosclerosis; however, their molecular mechanism is still largely unknown. The present study used a metabolomic approach to reveal the atheroprotective metabolites of ω-3 and investigate the underlying mechanisms.
We evaluated the development of atherosclerosis in LDL receptor-deficient mice (LDLR ) fed a Western-type diet (WTD) plus ω-3 and also LDLR and fat-1 transgenic (LDLR -fat-1 ) mice fed a WTD. The profiles of ω-3 in the plasma were screened by LC-MS/MS using unbiased systematic metabolomics analysis. We also studied the effect of metabolites of eicosapentaenoic acid (EPA) on endothelial activation in vitro.
The ω-3 diet and fat-1 transgene decreased monocyte infiltration, inhibited the expression of pro-inflammatory genes and significantly attenuated atherosclerotic plaque formation and enhanced plaque stability in LDLR mice. The content of 18-hydroxy-eicosapentaenoic acid (18-HEPE) and 17,18-epoxy-eicosatetraenoic acid (17,18-EEQ), from the cytochrome P450 pathway of EPA, was significantly higher in plasma from both ω-3-treated LDLR and LDLR -fat-1 mice as compared with WTD-fed LDLR mice. In vitro in endothelial cells, 18-HEPE or 17,18-EEQ decreased inflammatory gene expression induced by TNFα via NF-κB signalling and thereby inhibited monocyte adhesion to endothelial cells.
EPA protected against the development of atherosclerosis in atheroprone mice via the metabolites 18-HEPE and/or 17,18-EEQ, which reduced endothelial activation. These compounds may have therapeutic implications in atherosclerosis.
This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
动脉粥样硬化是由 LDL 在动脉血管壁易损部位的腔内滞留引发的适应性炎症反应所致。ω-3 多不饱和脂肪酸(ω-3)在动脉粥样硬化中有保护作用;然而,其分子机制在很大程度上仍然未知。本研究采用代谢组学方法揭示 ω-3 的抗动脉粥样硬化代谢物,并探讨其潜在机制。
我们评估了 LDL 受体缺陷型(LDLR )小鼠在西方饮食(WTD)加 ω-3 喂养下以及 LDLR 和 fat-1 转基因(LDLR-fat-1 )小鼠在 WTD 喂养下动脉粥样硬化的发展情况。使用非靶向系统代谢组学分析通过 LC-MS/MS 筛选 ω-3 在血浆中的谱。我们还研究了二十碳五烯酸(EPA)代谢物对体外内皮细胞激活的影响。
ω-3 饮食和 fat-1 转基因减少单核细胞浸润,抑制促炎基因表达,并显著减轻 LDLR 小鼠的动脉粥样硬化斑块形成和增强斑块稳定性。来自 EPA 细胞色素 P450 途径的 18-羟基二十碳五烯酸(18-HEPE)和 17,18-环氧二十碳三烯酸(17,18-EEQ)的含量在 ω-3 治疗的 LDLR 和 LDLR-fat-1 小鼠的血浆中均明显高于 WTD 喂养的 LDLR 小鼠。在体外的内皮细胞中,18-HEPE 或 17,18-EEQ 通过 NF-κB 信号通路降低 TNFα诱导的炎性基因表达,从而抑制单核细胞黏附于内皮细胞。
EPA 通过降低内皮细胞激活的代谢物 18-HEPE 和/或 17,18-EEQ 来保护易患动脉粥样硬化的小鼠免受动脉粥样硬化的发展。这些化合物在动脉粥样硬化中可能具有治疗意义。
本文是心血管疾病小型分子重点关注特刊的一部分。要查看该特刊中的其他文章,请访问 http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc。