Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK.
Biological Science, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton, SO17 1BJ, UK.
Plant J. 2017 Oct;92(2):291-304. doi: 10.1111/tpj.13655. Epub 2017 Sep 17.
Understanding the molecular basis of zinc (Zn) uptake and transport in staple cereal crops is critical for improving both Zn content and tolerance to low-Zn soils. This study demonstrates the importance of group F bZIP transcription factors and ZIP transporters in responses to Zn deficiency in wheat (Triticum aestivum). Seven group F TabZIP genes and 14 ZIPs with homeologs were identified in hexaploid wheat. Promoter analysis revealed the presence of Zn-deficiency-response elements (ZDREs) in a number of the ZIPs. Functional complementation of the zrt1/zrt2 yeast mutant by TaZIP3, -6, -7, -9 and -13 supported an ability to transport Zn. Group F TabZIPs contain the group-defining cysteine-histidine-rich motifs, which are the predicted binding site of Zn in the Zn-deficiency response. Conservation of these motifs varied between the TabZIPs suggesting that individual TabZIPs may have specific roles in the wheat Zn-homeostatic network. Increased expression in response to low Zn levels was observed for several of the wheat ZIPs and bZIPs; this varied temporally and spatially suggesting specific functions in the response mechanism. The ability of the group F TabZIPs to bind to specific ZDREs in the promoters of TaZIPs indicates a conserved mechanism in monocots and dicots in responding to Zn deficiency. In support of this, TabZIPF1-7DL and TabZIPF4-7AL afforded a strong level of rescue to the Arabidopsis hypersensitive bzip19 bzip23 double mutant under Zn deficiency. These results provide a greater understanding of Zn-homeostatic mechanisms in wheat, demonstrating an expanded repertoire of group F bZIP transcription factors, adding to the complexity of Zn homeostasis.
了解锌(Zn)在主要粮食作物中的摄取和转运的分子基础,对于提高作物的 Zn 含量和耐低 Zn 土壤能力至关重要。本研究表明,F 组 bZIP 转录因子和 ZIP 转运蛋白在小麦(Triticum aestivum)对 Zn 缺乏的响应中具有重要作用。在六倍体小麦中鉴定出 7 个 F 组 TabZIP 基因和 14 个具有同源基因的 ZIP。启动子分析表明,许多 ZIP 中存在 Zn 缺乏响应元件(ZDREs)。TaZIP3、-6、-7、-9 和 -13 对 zrt1/zrt2 酵母突变体的功能互补支持其转运 Zn 的能力。F 组 TabZIP 包含组定义的半胱氨酸-组氨酸丰富基序,这是 Zn 在 Zn 缺乏响应中的预测结合位点。TabZIP 之间这些基序的保守性存在差异,表明个别 TabZIP 可能在小麦 Zn 稳态网络中具有特定的作用。观察到几种小麦 ZIP 和 bZIP 对低 Zn 水平的表达增加;这种变化在时间和空间上有所不同,表明它们在响应机制中具有特定的功能。F 组 TabZIP 能够结合 TaZIPs 启动子中的特定 ZDREs,表明单子叶植物和双子叶植物在响应 Zn 缺乏方面具有保守的机制。支持这一观点的是,TabZIPF1-7DL 和 TabZIPF4-7AL 为 Arabidopsis hypersensitive bzip19 bzip23 双突变体在 Zn 缺乏下提供了强有力的拯救。这些结果提供了对小麦 Zn 稳态机制的更深入理解,证明了 F 组 bZIP 转录因子的扩展 repertoire,增加了 Zn 稳态的复杂性。