Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark.
CIBIO-InBIO, Research Centre in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal.
Planta. 2022 Nov 8;256(6):108. doi: 10.1007/s00425-022-04019-6.
This review describes zinc sensing and transcriptional regulation of the zinc deficiency response in Arabidopsis, and discusses how their evolutionary conservation in land plants facilitates translational approaches for improving the Zn nutritional value of crop species. Zinc is an essential micronutrient for all living organisms due to its presence in a large number of proteins, as a structural or catalytic cofactor. In plants, zinc homeostasis mechanisms comprise uptake from soil, transport and distribution throughout the plant to provide adequate cellular zinc availability. Here, I discuss the transcriptional regulation of the response to zinc deficiency and the zinc sensing mechanisms in Arabidopsis, and their evolutionary conservation in land plants. The Arabidopsis F-group basic region leucine-zipper (F-bZIP) transcription factors bZIP19 and bZIP23 function simultaneously as sensors of intracellular zinc status, by direct binding of zinc ions, and as the central regulators of the zinc deficiency response, with their target genes including zinc transporters from the ZRT/IRT-like Protein (ZIP) family and nicotianamine synthase enzymes that produce the zinc ligand nicotianamine. I note that this relatively simple mechanism of zinc sensing and regulation, together with the evolutionary conservation of F-bZIP transcription factors across land plants, offer important research opportunities. One of them is to use the F-bZIP-regulated zinc deficiency response as a tractable module for evolutionary and comparative functional studies. Another research opportunity is translational research in crop plants, modulating F-bZIP activity as a molecular switch to enhance zinc accumulation. This should become a useful plant-based solution to alleviate effects of zinc deficiency in soils, which impact crop production and crop zinc content, with consequences for human nutrition globally.
本文综述了拟南芥中锌感应和锌缺乏响应的转录调控,并讨论了陆地植物中这些调控机制的进化保守性如何促进作物物种锌营养价值的转化研究。锌是所有生物体必需的微量元素,因为它存在于大量的蛋白质中,作为结构或催化辅因子。在植物中,锌的内稳态机制包括从土壤中吸收、在植物体内的运输和分配,以提供足够的细胞内锌供应。在这里,我讨论了拟南芥中对锌缺乏的响应的转录调控以及锌感应机制,及其在陆地植物中的进化保守性。拟南芥 F 组碱性亮氨酸拉链(F-bZIP)转录因子 bZIP19 和 bZIP23 同时作为细胞内锌状态的传感器发挥作用,通过直接结合锌离子,并且作为锌缺乏响应的中央调控因子,其靶基因包括 ZRT/IRT 样蛋白(ZIP)家族的锌转运体和产生锌配体烟酰胺的尼克酰胺合成酶。我注意到,这种相对简单的锌感应和调节机制,以及 F-bZIP 转录因子在陆地植物中的进化保守性,为研究提供了重要机会。其中之一是利用 F-bZIP 调控的锌缺乏响应作为进化和比较功能研究的可行模块。另一个研究机会是在作物植物中进行转化研究,调节 F-bZIP 活性作为分子开关来增强锌的积累。这应该成为一种有用的基于植物的解决方案,以减轻土壤中锌缺乏对作物生产和作物锌含量的影响,从而对全球人类营养产生影响。