Suppr超能文献

在AZ31镁合金上形成的RGDC肽诱导仿生磷酸钙涂层。

RGDC Peptide-Induced Biomimetic Calcium Phosphate Coating Formed on AZ31 Magnesium Alloy.

作者信息

Cao Lin, Wang Lina, Fan Lingying, Xiao Wenjun, Lin Bingpeng, Xu Yimeng, Liang Jun, Cao Baocheng

机构信息

School of Stomatology, Lanzhou University, Lanzhou 730000, China.

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.

出版信息

Materials (Basel). 2017 Mar 28;10(4):358. doi: 10.3390/ma10040358.

Abstract

Magnesium alloys as biodegradable metal implants have received a lot of interest in biomedical applications. However, magnesium alloys have extremely high corrosion rates a in physiological environment, which have limited their application in the orthopedic field. In this study, calcium phosphate compounds (Ca-P) coating was prepared by arginine-glycine-aspartic acid-cysteine (RGDC) peptide-induced mineralization in 1.5 simulated body fluid (SBF) to improve the corrosion resistance and biocompatibility of the AZ31 magnesium alloys. The adhesion of Ca-P coating to the AZ31 substrates was evaluated by a scratch test. Corrosion resistance and cytocompatibility of the Ca-P coating were investigated. The results showed that the RGDC could effectively promote the nucleation and crystallization of the Ca-P coating and the Ca-P coating had poor adhesion to the AZ31 substrates. The corrosion resistance and biocompatibility of the biomimetic Ca-P coating Mg alloys were greatly improved compared with that of the uncoated sample.

摘要

镁合金作为可生物降解的金属植入物在生物医学应用中受到了广泛关注。然而,镁合金在生理环境中的腐蚀速率极高,这限制了它们在骨科领域的应用。在本研究中,通过精氨酸-甘氨酸-天冬氨酸-半胱氨酸(RGDC)肽诱导矿化在1.5倍模拟体液(SBF)中制备磷酸钙化合物(Ca-P)涂层,以提高AZ31镁合金的耐腐蚀性和生物相容性。通过划痕试验评估Ca-P涂层与AZ31基体的附着力。研究了Ca-P涂层的耐腐蚀性和细胞相容性。结果表明,RGDC能有效促进Ca-P涂层的成核和结晶,且Ca-P涂层与AZ31基体的附着力较差。与未涂层样品相比,仿生Ca-P涂层镁合金的耐腐蚀性和生物相容性有了很大提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85c4/5506929/884de9455fdb/materials-10-00358-g001a.jpg

相似文献

1
RGDC Peptide-Induced Biomimetic Calcium Phosphate Coating Formed on AZ31 Magnesium Alloy.
Materials (Basel). 2017 Mar 28;10(4):358. doi: 10.3390/ma10040358.
2
Mussel-inspired functionalization of PEO/PCL composite coating on a biodegradable AZ31 magnesium alloy.
Colloids Surf B Biointerfaces. 2016 May 1;141:327-337. doi: 10.1016/j.colsurfb.2016.02.004. Epub 2016 Feb 4.
3
Corrosion resistance and antibacterial activity of zinc-loaded montmorillonite coatings on biodegradable magnesium alloy AZ31.
Acta Biomater. 2019 Oct 15;98:196-214. doi: 10.1016/j.actbio.2019.05.069. Epub 2019 May 31.
4
In vitro degradation behavior and cytocompatibility of biodegradable AZ31 alloy with PEO/HT composite coating.
Colloids Surf B Biointerfaces. 2015 Apr 1;128:44-54. doi: 10.1016/j.colsurfb.2015.02.011. Epub 2015 Feb 14.
6
Microwave-assisted magnesium phosphate coating on the AZ31 magnesium alloy.
Biomed Mater. 2017 Aug 18;12(4):045026. doi: 10.1088/1748-605X/aa78c0.
7
Preparation and corrosion resistance of magnesium phytic acid/hydroxyapatite composite coatings on biodegradable AZ31 magnesium alloy.
J Mater Sci Mater Med. 2017 Jun;28(6):82. doi: 10.1007/s10856-017-5876-9. Epub 2017 Apr 19.
9
Rapid coating of AZ31 magnesium alloy with calcium deficient hydroxyapatite using microwave energy.
Mater Sci Eng C Mater Biol Appl. 2015 Apr;49:364-372. doi: 10.1016/j.msec.2015.01.046. Epub 2015 Jan 10.
10
corrosion resistance of layer-by-layer assembled polyacrylic acid multilayers induced Ca-P coating on magnesium alloy AZ31.
Bioact Mater. 2020 Feb 10;5(1):153-163. doi: 10.1016/j.bioactmat.2020.02.001. eCollection 2020 Mar.

引用本文的文献

2
Anti-Adhesive Organosilane Coating Comprising Visibility on Demand.
Polymers (Basel). 2022 Sep 24;14(19):4006. doi: 10.3390/polym14194006.
3
A novel method for evaluating the dynamic biocompatibility of degradable biomaterials based on real-time cell analysis.
Regen Biomater. 2020 Jun;7(3):321-329. doi: 10.1093/rb/rbaa017. Epub 2020 May 1.
5
corrosion resistance of layer-by-layer assembled polyacrylic acid multilayers induced Ca-P coating on magnesium alloy AZ31.
Bioact Mater. 2020 Feb 10;5(1):153-163. doi: 10.1016/j.bioactmat.2020.02.001. eCollection 2020 Mar.
6
In Vitro Degradation Behaviors of Manganese-Calcium Phosphate Coatings on an Mg-Ca-Zn Alloy.
Scanning. 2018 Feb 13;2018:6268579. doi: 10.1155/2018/6268579. eCollection 2018.
8
In Vitro Degradation of Pure Magnesium-The Effects of Glucose and/or Amino Acid.
Materials (Basel). 2017 Jun 29;10(7):725. doi: 10.3390/ma10070725.

本文引用的文献

1
Bioactive Ca-P coating with self-sealing structure on pure magnesium.
J Mater Sci Mater Med. 2013 Apr;24(4):889-901. doi: 10.1007/s10856-013-4850-4. Epub 2013 Feb 6.
2
In vitro degradation of four magnesium-zinc-strontium alloys and their cytocompatibility with human embryonic stem cells.
J Mater Sci Mater Med. 2013 Apr;24(4):989-1003. doi: 10.1007/s10856-013-4853-1. Epub 2013 Jan 30.
3
Growth of calcium phosphates on magnesium substrates for corrosion control in biomedical applications via immersion techniques.
J Biomed Mater Res B Appl Biomater. 2013 Jan;101(1):162-72. doi: 10.1002/jbm.b.32830. Epub 2012 Oct 22.
4
Biomedical coatings on magnesium alloys - a review.
Acta Biomater. 2012 Jul;8(7):2442-55. doi: 10.1016/j.actbio.2012.04.012. Epub 2012 Apr 14.
5
Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of a Mg-Nd-Zn-Zr alloy.
J Mech Behav Biomed Mater. 2012 Mar;7:77-86. doi: 10.1016/j.jmbbm.2011.05.026. Epub 2011 May 24.
6
Impact of RGD nanopatterns grafted onto titanium on osteoblastic cell adhesion.
Biomacromolecules. 2012 Mar 12;13(3):896-904. doi: 10.1021/bm201812u. Epub 2012 Feb 10.
7
RGD peptide immobilized on TiO2 nanotubes for increased bone marrow stromal cells adhesion and osteogenic gene expression.
J Mater Sci Mater Med. 2012 Feb;23(2):527-36. doi: 10.1007/s10856-011-4479-0. Epub 2011 Dec 6.
8
Calcium phosphate coatings on magnesium alloys for biomedical applications: a review.
Acta Biomater. 2012 Jan;8(1):20-30. doi: 10.1016/j.actbio.2011.10.016. Epub 2011 Oct 20.
9
Cell adhesion, spreading, and proliferation on surface functionalized with RGD nanopillar arrays.
Biomaterials. 2012 Jan;33(3):731-9. doi: 10.1016/j.biomaterials.2011.10.003. Epub 2011 Oct 20.
10
Surface modifications of magnesium alloys for biomedical applications.
Ann Biomed Eng. 2011 Jul;39(7):1857-71. doi: 10.1007/s10439-011-0300-y. Epub 2011 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验