Suppr超能文献

基于交叉凹陷贴片谐振器的用于太赫兹波的超薄六波段偏振不敏感完美超材料吸收器

Ultrathin Six-Band Polarization-Insensitive Perfect Metamaterial Absorber Based on a Cross-Cave Patch Resonator for Terahertz Waves.

作者信息

Cheng Yong Zhi, Huang Mu Lin, Chen Hao Ran, Guo Zhen Zhong, Mao Xue Song, Gong Rong Zhou

机构信息

School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.

Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430081, China.

出版信息

Materials (Basel). 2017 May 28;10(6):591. doi: 10.3390/ma10060591.

Abstract

A simple design of an ultrathin six-band polarization-insensitive terahertz perfect metamaterial absorber (PMMA), composed of a metal cross-cave patch resonator (CCPR) placed over a ground plane, was proposed and investigated numerically. The numerical simulation results demonstrate that the average absorption peaks are up to 95% at six resonance frequencies. Owing to the ultra-narrow band resonance absorption of the structure, the designed PMMA also exhibits a higher Q factor (>65). In addition, the absorption properties can be kept stable for both normal incident transverse magnetic (TM) and transverse electric (TE) waves. The physical mechanism behind the observed high-level absorption is illustrated by the electric and power loss density distributions. The perfect absorption originates mainly from the higher-order multipolar plasmon resonance of the structure, which differs sharply from most previous studies of PMMAs. Furthermore, the resonance absorption properties of the PMMA can be modified and adjusted easily by varying the geometric parameters of the unit cell.

摘要

提出并数值研究了一种简单的超薄六波段偏振不敏感太赫兹完美超材料吸收器(PMMA)设计,该吸收器由置于接地平面上的金属交叉凹槽贴片谐振器(CCPR)组成。数值模拟结果表明,在六个共振频率处平均吸收峰高达95%。由于该结构具有超窄带共振吸收特性,所设计的PMMA还具有较高的品质因数(>65)。此外,对于垂直入射的横向磁波(TM)和横向电波(TE),吸收特性均可保持稳定。通过电场和功率损耗密度分布说明了所观察到的高水平吸收背后的物理机制。完美吸收主要源于该结构的高阶多极等离子体共振,这与之前大多数关于完美超材料吸收器的研究有很大不同。此外,通过改变单元胞的几何参数,可以轻松修改和调整PMMA的共振吸收特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4fa/5553408/d5fe3611941c/materials-10-00591-g001.jpg

相似文献

5
Polarization-Controlled and Flexible Single-/Penta-Band Metamaterial Absorber.
Materials (Basel). 2018 Sep 5;11(9):1619. doi: 10.3390/ma11091619.
7
Ultra-flexible polarization-insensitive multiband terahertz metamaterial absorber.
Appl Opt. 2015 Mar 20;54(9):2376-82. doi: 10.1364/AO.54.002376.
8
Design and Fabrication of a Triple-Band Terahertz Metamaterial Absorber.
Nanomaterials (Basel). 2021 Apr 25;11(5):1110. doi: 10.3390/nano11051110.
9
A Polarization-Insensitive and Wide-Angle Terahertz Absorber with Ring-Porous Patterned Graphene Metasurface.
Nanomaterials (Basel). 2020 Jul 19;10(7):1410. doi: 10.3390/nano10071410.

引用本文的文献

1
Transparent and Ultra-Thin Flexible Checkerboard Metasurface for Radar-Infrared Bi-Stealth.
Sensors (Basel). 2024 Feb 27;24(5):1531. doi: 10.3390/s24051531.
2
Broadband Bi-Directional Polarization-Insensitive Metamaterial Absorber.
Materials (Basel). 2021 Nov 30;14(23):7339. doi: 10.3390/ma14237339.
5
Salisbury Screen Terahertz Absorber Formed with an Insulator: 4-,-Dimethylamino-4'-'-methyl-stilbazolium Tosylate (DAST).
ACS Omega. 2019 May 24;4(5):9204-9210. doi: 10.1021/acsomega.9b00013. eCollection 2019 May 31.
6
An Ultra-Wideband THz/IR Metamaterial Absorber Based on Doped Silicon.
Materials (Basel). 2018 Dec 19;11(12):2590. doi: 10.3390/ma11122590.
7
Polarization-Controlled and Flexible Single-/Penta-Band Metamaterial Absorber.
Materials (Basel). 2018 Sep 5;11(9):1619. doi: 10.3390/ma11091619.
8
MEMS terahertz-to-infrared band converter using frequency selective planar metamaterial.
Sci Rep. 2018 Aug 20;8(1):12466. doi: 10.1038/s41598-018-30858-z.
10
Controlled Defect Based Ultra Broadband Full-sized Metamaterial Absorber.
Sci Rep. 2018 Jun 22;8(1):9523. doi: 10.1038/s41598-018-27920-1.

本文引用的文献

1
Active Photoswitching of Sharp Fano Resonances in THz Metadevices.
Adv Mater. 2017 Jan;29(3). doi: 10.1002/adma.201603355. Epub 2016 Nov 14.
3
Broadband visible-light absorber via hybridization of propagating surface plasmon.
Opt Lett. 2016 May 1;41(9):1965-8. doi: 10.1364/OL.41.001965.
4
Far-infrared absorber based on standing-wave resonances in metal-dielectric-metal cavity.
Opt Express. 2015 Aug 10;23(16):20366-80. doi: 10.1364/OE.23.020366.
7
Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling.
Opt Express. 2014 Dec 15;22 Suppl 7:A1713-24. doi: 10.1364/OE.22.0A1713.
8
Enhanced broadband absorption in gold by plasmonic tapered coaxial holes.
Opt Express. 2014 Dec 29;22(26):32233-44. doi: 10.1364/OE.22.032233.
9
Enhanced transmission due to antireflection coating layer at surface plasmon resonance wavelengths.
Opt Express. 2014 Dec 1;22(24):30161-9. doi: 10.1364/OE.22.030161.
10
Polarization-independent dual-band perfect absorber utilizing multiple magnetic resonances.
Opt Express. 2013 Dec 30;21(26):32484-90. doi: 10.1364/OE.21.032484.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验