Suppr超能文献

三频段太赫兹超材料吸波器的设计与制造

Design and Fabrication of a Triple-Band Terahertz Metamaterial Absorber.

作者信息

Wang Jinfeng, Lang Tingting, Hong Zhi, Xiao Meiyu, Yu Jing

机构信息

Institute of Optoelectronic Technology, China Jiliang University, Hangzhou 310018, China.

Centre for THz Research, China Jiliang University, Hangzhou 310018, China.

出版信息

Nanomaterials (Basel). 2021 Apr 25;11(5):1110. doi: 10.3390/nano11051110.

Abstract

We presented and manufactured a triple-band terahertz (THz) metamaterial absorber with three concentric square ring metallic resonators, a polyethylene terephthalate (PET) layer, and a metallic substrate. The simulation results demonstrate that the absorptivity of 99.5%, 86.4%, and 98.4% can be achieved at resonant frequency of 0.337, 0.496, and 0.718 THz, respectively. The experimental results show three distinct absorption peaks at 0.366, 0.512, and 0.751 THz, which is mostly agreement with the simulation. We analyzed the absorption mechanism from the distribution of electric and magnetic fields. The sensitivity of the three peaks of this triple-band absorber to the surrounding is 72, 103.5, 139.5 GHz/RIU, respectively. In addition, the absorber is polarization insensitive because of the symmetric configuration. The absorber can simultaneously exhibit high absorption effect at incident angles up to 60° for transverse electric (TE) polarization and 70° for transverse magnetic (TM) polarization. This presented terahertz metamaterial absorber with a triple-band absorption and easy fabrication can find important applications in biological sensing, THz imaging, filter and optical communication.

摘要

我们展示并制造了一种具有三个同心方环金属谐振器、一个聚对苯二甲酸乙二酯(PET)层和一个金属基板的三波段太赫兹(THz)超材料吸收器。模拟结果表明,在0.337、0.496和0.718太赫兹的谐振频率下,吸收率分别可达到99.5%、86.4%和98.4%。实验结果显示在0.366、0.512和0.751太赫兹处有三个明显的吸收峰,这与模拟结果基本一致。我们从电场和磁场分布分析了吸收机制。这种三波段吸收器的三个峰对周围环境的灵敏度分别为72、103.5、139.5吉赫兹/折射率单位(GHz/RIU)。此外,由于结构对称,该吸收器对偏振不敏感。对于横向电(TE)偏振,该吸收器在入射角高达60°时,对于横向磁(TM)偏振在入射角高达70°时,都能同时呈现出高吸收效果。这种具有三波段吸收且易于制造的太赫兹超材料吸收器在生物传感、太赫兹成像、滤波器和光通信等方面具有重要应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/120b/8146610/c363745c304a/nanomaterials-11-01110-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验