Calero Carles, Stanley H Eugene, Franzese Giancarlo
Secció de Física Estadística i Interdisciplinària-Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain.
Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Av. Joan XXIII S/N, Barcelona 08028, Spain.
Materials (Basel). 2016 Apr 27;9(5):319. doi: 10.3390/ma9050319.
Hydration water determines the stability and function of phospholipid membranes as well as the interaction of membranes with other molecules. Experiments and simulations have shown that water dynamics slows down dramatically as the hydration decreases, suggesting that the interfacial water that dominates the average dynamics at low hydration is slower than water away from the membrane. Here, based on all-atom molecular dynamics simulations, we provide an interpretation of the slowdown of interfacial water in terms of the structure and dynamics of water-water and water-lipid hydrogen bonds (HBs). We calculate the rotational and translational slowdown of the dynamics of water confined in stacked phospholipid membranes at different levels of hydration, from completely hydrated to poorly hydrated membranes. For all hydrations, we analyze the distribution of HBs and find that water-lipids HBs last longer than water-water HBs and that at low hydration most of the water is in the interior of the membrane. We also show that water-water HBs become more persistent as the hydration is lowered. We attribute this effect (i) to HBs between water molecules that form, in turn, persistent HBs with lipids; (ii) to the hindering of the H-bonding switching between water molecules due to the lower water density at the interface; and (iii) to the higher probability of water-lipid HBs as the hydration decreases. Our interpretation of the large dynamic slowdown in water under dehydration is potentially relevant in understanding membrane biophysics at different hydration levels.
水化水决定了磷脂膜的稳定性和功能,以及膜与其他分子之间的相互作用。实验和模拟表明,随着水化作用的降低,水的动力学显著减慢,这表明在低水化状态下主导平均动力学的界面水比远离膜的水更慢。在此,基于全原子分子动力学模拟,我们根据水 - 水和水 - 脂质氢键(HBs)的结构和动力学对界面水的减慢现象给出一种解释。我们计算了在不同水化水平下,从完全水合到水合较差的堆叠磷脂膜中受限水的动力学的旋转和移动减慢情况。对于所有水化水平,我们分析了氢键的分布,发现水 - 脂质氢键比水 - 水氢键持续时间更长,并且在低水化状态下大部分水位于膜内部。我们还表明,随着水化程度降低,水 - 水氢键变得更加持久。我们将这种效应归因于:(i)水分子之间形成的氢键,这些氢键又与脂质形成持久的氢键;(ii)由于界面处水密度较低,水分子之间氢键切换受到阻碍;(iii)随着水化程度降低,水 - 脂质氢键形成的概率更高。我们对脱水状态下水的大幅动力学减慢的解释可能与理解不同水化水平下的膜生物物理学相关。