Suppr超能文献

温度控制算法对分子动力学模拟中输运性质和动力学的影响

Effects of Temperature Control Algorithms on Transport Properties and Kinetics in Molecular Dynamics Simulations.

作者信息

Basconi Joseph E, Shirts Michael R

机构信息

Department of Chemical Engineering, University of Virginia , Charlottesville, Virginia 22904-4741, United States.

出版信息

J Chem Theory Comput. 2013 Jul 9;9(7):2887-99. doi: 10.1021/ct400109a. Epub 2013 Jun 3.

Abstract

Temperature control algorithms in molecular dynamics (MD) simulations are necessary to study isothermal systems. However, these thermostatting algorithms alter the velocities of the particles and thus modify the dynamics of the system with respect to the microcanonical ensemble, which could potentially lead to thermostat-dependent dynamical artifacts. In this study, we investigate how six well-established thermostat algorithms applied with different coupling strengths and to different degrees of freedom affect the dynamics of various molecular systems. We consider dynamic processes occurring on different times scales by measuring translational and rotational self-diffusion as well as the shear viscosity of water, diffusion of a small molecule solvated in water, and diffusion and the dynamic structure factor of a polymer chain in water. All of these properties are significantly dampened by thermostat algorithms which randomize particle velocities, such as the Andersen thermostat and Langevin dynamics, when strong coupling is used. For the solvated small molecule and polymer, these dampening effects are reduced somewhat if the thermostats are applied to the solvent alone, such that the solute's temperature is maintained only through thermal contact with solvent particles. Algorithms which operate by scaling the velocities, such as the Berendsen thermostat, the stochastic velocity rescaling approach of Bussi and co-workers, and the Nosé-Hoover thermostat, yield transport properties that are statistically indistinguishable from those of the microcanonical ensemble, provided they are applied globally, i.e. coupled to the system's kinetic energy. When coupled to local kinetic energies, a velocity scaling thermostat can have dampening effects comparable to a velocity randomizing method, as we observe when a massive Nose-Hoover coupling scheme is used to simulate water. Correct dynamical properties, at least those studied in this paper, are obtained with the Berendsen thermostat applied globally, despite the fact that it yields the wrong kinetic energy distribution.

摘要

分子动力学(MD)模拟中的温度控制算法对于研究等温系统是必不可少的。然而,这些恒温算法会改变粒子的速度,从而相对于微正则系综改变系统的动力学,这可能潜在地导致依赖于恒温器的动力学伪像。在本研究中,我们研究了六种成熟的恒温算法,以不同的耦合强度应用于不同的自由度时,如何影响各种分子系统的动力学。我们通过测量平动和转动自扩散以及水的剪切粘度、水中溶剂化小分子的扩散以及水中聚合物链的扩散和动态结构因子,来考虑在不同时间尺度上发生的动态过程。当使用强耦合时,所有这些性质都会被随机化粒子速度的恒温算法显著抑制,例如安德森恒温器和朗之万动力学。对于溶剂化的小分子和聚合物,如果仅将恒温器应用于溶剂,使得溶质的温度仅通过与溶剂粒子的热接触来维持,这些抑制作用会有所降低。通过缩放速度来操作的算法,如贝伦德森恒温器、布西及其同事的随机速度重缩放方法以及诺思-胡佛恒温器,只要全局应用,即与系统的动能耦合,就会产生与微正则系综在统计上无法区分的输运性质。当与局部动能耦合时,速度缩放恒温器可能会产生与速度随机化方法相当的抑制作用,正如我们在使用大规模诺思-胡佛耦合方案模拟水时所观察到的那样。尽管贝伦德森恒温器产生错误的动能分布,但全局应用该恒温器仍能获得正确的动力学性质,至少是本文所研究的那些性质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验