Park Choon-Sang, Kim Dong Ha, Shin Bhum Jae, Kim Do Yeob, Lee Hyung-Kun, Tae Heung-Sik
School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu 702-701, Korea.
Department of Electronics Engineering, Sejong University, Seoul 143-747, Korea.
Materials (Basel). 2016 Sep 30;9(10):812. doi: 10.3390/ma9100812.
This study proposes a new nanostructured conductive polymer synthesis method that can grow the single-crystalline high-density plasma-polymerized nanoparticle structures by enhancing the sufficient nucleation and fragmentation of the pyrrole monomer using a novel atmospheric pressure plasma jet (APPJ) technique. Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FE-SEM) results show that the plasma-polymerized pyrrole (pPPy) nanoparticles have a fast deposition rate of 0.93 µm·min under a room-temperature process and have single-crystalline characteristics with porous properties. In addition, the single-crystalline high-density pPPy nanoparticle structures were successfully synthesized on the glass, plastic, and interdigitated gas sensor electrode substrates using a novel plasma polymerization technique at room temperature. To check the suitability of the active layer for the fabrication of electrochemical toxic gas sensors, the resistance variations of the pPPy nanoparticles grown on the interdigitated gas sensor electrodes were examined by doping with iodine. As a result, the proposed APPJ device could obtain the high-density and ultra-fast single-crystalline pPPy thin films for various gas sensor applications. This work will contribute to the design of highly sensitive gas sensors adopting the novel plasma-polymerized conductive polymer as new active layer.
本研究提出了一种新的纳米结构导电聚合物合成方法,该方法可通过使用新型大气压等离子体射流(APPJ)技术增强吡咯单体的充分成核和碎片化,来生长单晶高密度等离子体聚合纳米颗粒结构。透射电子显微镜(TEM)、傅里叶变换红外光谱(FT-IR)、X射线光电子能谱(XPS)和场发射扫描电子显微镜(FE-SEM)结果表明,等离子体聚合吡咯(pPPy)纳米颗粒在室温过程下具有0.93 µm·min的快速沉积速率,并具有多孔特性的单晶特征。此外,使用新型等离子体聚合技术在室温下成功地在玻璃、塑料和叉指式气体传感器电极基板上合成了单晶高密度pPPy纳米颗粒结构。为了检验活性层用于制造电化学有毒气体传感器的适用性,通过掺杂碘来检测在叉指式气体传感器电极上生长的pPPy纳米颗粒的电阻变化。结果表明,所提出的APPJ装置可获得用于各种气体传感器应用的高密度和超快速单晶pPPy薄膜。这项工作将有助于设计采用新型等离子体聚合导电聚合物作为新活性层的高灵敏度气体传感器。