Suppr超能文献

1001 例 COPD 患者的体力活动模式和聚类。

Physical activity patterns and clusters in 1001 patients with COPD.

机构信息

1 Department of Research & Education, CIRO, Horn, The Netherlands.

2 Department of Respiratory Medicine, Maastricht University Medical Center+ (MUMC+), Maastricht, The Netherlands.

出版信息

Chron Respir Dis. 2017 Aug;14(3):256-269. doi: 10.1177/1479972316687207. Epub 2017 Feb 24.

Abstract

We described physical activity measures and hourly patterns in patients with chronic obstructive pulmonary disease (COPD) after stratification for generic and COPD-specific characteristics and, based on multiple physical activity measures, we identified clusters of patients. In total, 1001 patients with COPD (65% men; age, 67 years; forced expiratory volume in the first second [FEV], 49% predicted) were studied cross-sectionally. Demographics, anthropometrics, lung function and clinical data were assessed. Daily physical activity measures and hourly patterns were analysed based on data from a multisensor armband. Principal component analysis (PCA) and cluster analysis were applied to physical activity measures to identify clusters. Age, body mass index (BMI), dyspnoea grade and ADO index (including age, dyspnoea and airflow obstruction) were associated with physical activity measures and hourly patterns. Five clusters were identified based on three PCA components, which accounted for 60% of variance of the data. Importantly, couch potatoes (i.e. the most inactive cluster) were characterised by higher BMI, lower FEV, worse dyspnoea and higher ADO index compared to other clusters ( p < 0.05 for all). Daily physical activity measures and hourly patterns are heterogeneous in COPD. Clusters of patients were identified solely based on physical activity data. These findings may be useful to develop interventions aiming to promote physical activity in COPD.

摘要

我们描述了慢性阻塞性肺疾病(COPD)患者的体力活动测量指标和时间模式,这些患者按一般特征和 COPD 特异性特征进行分层,并且基于多种体力活动测量指标,我们确定了患者的聚类。总共研究了 1001 例 COPD 患者(65%为男性;年龄 67 岁;第一秒用力呼气量 [FEV] 占预计值的 49%)。评估了人口统计学、人体测量学、肺功能和临床数据。根据多传感器臂带的数据分析了日常体力活动测量指标和时间模式。应用主成分分析(PCA)和聚类分析对体力活动测量指标进行聚类分析。年龄、体重指数(BMI)、呼吸困难程度和 ADO 指数(包括年龄、呼吸困难和气流阻塞)与体力活动测量指标和时间模式有关。基于三个 PCA 分量,确定了五个聚类,占数据方差的 60%。重要的是,与其他聚类相比,沙发土豆(即最不活跃的聚类)的 BMI 更高、FEV 更低、呼吸困难更严重且 ADO 指数更高(所有 p 值均<0.05)。COPD 患者的日常体力活动测量指标和时间模式存在异质性。仅根据体力活动数据确定了患者的聚类。这些发现可能有助于制定旨在促进 COPD 患者体力活动的干预措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a117/5720232/5a37cdc4a6ae/10.1177_1479972316687207-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验