Suppr超能文献

人们能够识别现实场景的原始照片和经过处理的照片吗?

Can people identify original and manipulated photos of real-world scenes?

作者信息

Nightingale Sophie J, Wade Kimberley A, Watson Derrick G

机构信息

Department of Psychology, University of Warwick, Coventry, CV4 7AL UK.

出版信息

Cogn Res Princ Implic. 2017;2(1):30. doi: 10.1186/s41235-017-0067-2. Epub 2017 Jul 18.

Abstract

Advances in digital technology mean that the creation of visually compelling photographic fakes is growing at an incredible speed. The prevalence of manipulated photos in our everyday lives invites an important, yet largely unanswered, question: Can people detect photo forgeries? Previous research using simple computer-generated stimuli suggests people are poor at detecting geometrical inconsistencies within a scene. We do not know, however, whether such limitations also apply to real-world scenes that contain common properties that the human visual system is attuned to processing. In two experiments we asked people to detect and locate manipulations within images of real-world scenes. Subjects demonstrated a limited ability to detect original and manipulated images. Furthermore, across both experiments, even when subjects correctly detected manipulated images, they were often unable to locate the manipulation. People's ability to detect manipulated images was positively correlated with the extent of disruption to the underlying structure of the pixels in the photo. We also explored whether manipulation type and individual differences were associated with people's ability to identify manipulations. Taken together, our findings show, for the first time, that people have poor ability to identify whether a real-world image is original or has been manipulated. The results have implications for professionals working with digital images in legal, media, and other domains.

摘要

数字技术的进步意味着视觉上令人信服的伪造照片的制作正以惊人的速度增长。在我们日常生活中,经过处理的照片随处可见,这引发了一个重要但大多未得到解答的问题:人们能察觉照片造假吗?先前使用简单计算机生成刺激物的研究表明,人们很难察觉到场景中的几何不一致之处。然而,我们尚不清楚这些局限性是否也适用于包含人类视觉系统易于处理的常见特征的真实场景。在两项实验中,我们要求人们在真实场景图像中检测并定位处理痕迹。受试者检测原始图像和处理过的图像的能力有限。此外,在两项实验中,即使受试者正确检测出处理过的图像,他们也常常无法定位处理痕迹。人们检测处理过的图像的能力与照片像素底层结构的破坏程度呈正相关。我们还探究了处理类型和个体差异是否与人们识别处理痕迹的能力有关。综合来看,我们的研究结果首次表明,人们识别真实世界图像是原始图像还是经过处理的图像的能力很差。这些结果对法律、媒体和其他领域中处理数字图像的专业人员具有启示意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1943/6091305/223e02fe5e00/41235_2017_67_Fig1_HTML.jpg

相似文献

1
Can people identify original and manipulated photos of real-world scenes?
Cogn Res Princ Implic. 2017;2(1):30. doi: 10.1186/s41235-017-0067-2. Epub 2017 Jul 18.
2
Can people detect errors in shadows and reflections?
Atten Percept Psychophys. 2019 Nov;81(8):2917-2943. doi: 10.3758/s13414-019-01773-w.
3
Investigating age-related differences in ability to distinguish between original and manipulated images.
Psychol Aging. 2022 May;37(3):326-337. doi: 10.1037/pag0000682. Epub 2022 Apr 25.
4
Recent advances in digital image manipulation detection techniques: A brief review.
Forensic Sci Int. 2020 Jul;312:110311. doi: 10.1016/j.forsciint.2020.110311. Epub 2020 May 7.
5
Image Forensics.
Annu Rev Vis Sci. 2019 Sep 15;5:549-573. doi: 10.1146/annurev-vision-091718-014827.
6
How many pixels make an image?
Vis Neurosci. 2009 Jan-Feb;26(1):123-31. doi: 10.1017/S0952523808080930. Epub 2009 Feb 16.
7
News authentication and tampered images: evaluating the photo-truth impact through image verification algorithms.
Heliyon. 2020 Dec 24;6(12):e05808. doi: 10.1016/j.heliyon.2020.e05808. eCollection 2020 Dec.
9
The time course of natural scene perception with reduced attention.
J Neurophysiol. 2016 Feb 1;115(2):931-46. doi: 10.1152/jn.00896.2015. Epub 2015 Nov 25.

引用本文的文献

1
Experts fail to reliably detect AI-generated histological data.
Sci Rep. 2024 Nov 19;14(1):28677. doi: 10.1038/s41598-024-73913-8.
2
Unraveling the impact of self-esteem on the utilization of Instagram filters: the mediating role of fear of negative evaluation.
Front Psychol. 2024 Apr 29;15:1302662. doi: 10.3389/fpsyg.2024.1302662. eCollection 2024.
3
Misinformation and the Sins of Memory: False-Belief Formation and Limits on Belief Revision.
J Appl Res Mem Cogn. 2022 Dec;11(4):471-477. doi: 10.1037/mac0000090.
4
Visual attention in change blindness for objects and shadows.
Perception. 2022 Sep;51(9):605-623. doi: 10.1177/03010066221109936. Epub 2022 Aug 15.
5
Deepfake detection by human crowds, machines, and machine-informed crowds.
Proc Natl Acad Sci U S A. 2022 Jan 4;119(1). doi: 10.1073/pnas.2110013119.
6
The 10-Point Plan 2021: Updated Concepts for Improved Procedural Safety During Facial Filler Treatments.
Clin Cosmet Investig Dermatol. 2021 Jul 6;14:779-814. doi: 10.2147/CCID.S315711. eCollection 2021.
7
Hunters and Gatherers of Pictures: Why Photography Has Become a Human Universal.
Front Psychol. 2021 Jun 8;12:654474. doi: 10.3389/fpsyg.2021.654474. eCollection 2021.
8
News authentication and tampered images: evaluating the photo-truth impact through image verification algorithms.
Heliyon. 2020 Dec 24;6(12):e05808. doi: 10.1016/j.heliyon.2020.e05808. eCollection 2020 Dec.
9
Aging in an Era of Fake News.
Curr Dir Psychol Sci. 2020 Jun;29(3):316-323. doi: 10.1177/0963721420915872. Epub 2020 May 19.
10
Finding counterfeited banknotes: the roles of vision and touch.
Cogn Res Princ Implic. 2020 Aug 20;5(1):40. doi: 10.1186/s41235-020-00236-3.

本文引用的文献

1
Change blindness for cast shadows in natural scenes: Even informative shadow changes are missed.
Atten Percept Psychophys. 2016 May;78(4):978-87. doi: 10.3758/s13414-015-1054-7.
2
The impending demise of the item in visual search.
Behav Brain Sci. 2017 Jan;40:e132. doi: 10.1017/S0140525X15002794. Epub 2015 Dec 17.
3
Nonprobative photographs (or words) inflate truthiness.
Psychon Bull Rev. 2012 Oct;19(5):969-74. doi: 10.3758/s13423-012-0292-0.
5
Change blindness.
Trends Cogn Sci. 1997 Oct;1(7):261-7. doi: 10.1016/S1364-6613(97)01080-2.
6
(In) sensitivity to spatial distortion in natural scenes.
J Vis. 2010 Feb 24;10(2):23.1-15. doi: 10.1167/10.2.23.
8
Cognitive maps in rats and men.
Psychol Rev. 1948 Jul;55(4):189-208. doi: 10.1037/h0061626.
9
Ambiguities and conventions in the perception of visual art.
Vision Res. 2008 Sep;48(20):2143-53. doi: 10.1016/j.visres.2008.06.010. Epub 2008 Jul 29.
10
Low-level visual saliency does not predict change detection in natural scenes.
J Vis. 2007 Jul 11;7(10):3.1-10. doi: 10.1167/7.10.3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验