Suppr超能文献

多说话人环境中无法访问干净源时的注意力选择的神经解码。

Neural decoding of attentional selection in multi-speaker environments without access to clean sources.

机构信息

Department of Electrical Engineering, Columbia University, New York, NY, United States of America. Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States of America.

出版信息

J Neural Eng. 2017 Oct;14(5):056001. doi: 10.1088/1741-2552/aa7ab4. Epub 2017 Aug 4.

Abstract

OBJECTIVE

People who suffer from hearing impairments can find it difficult to follow a conversation in a multi-speaker environment. Current hearing aids can suppress background noise; however, there is little that can be done to help a user attend to a single conversation amongst many without knowing which speaker the user is attending to. Cognitively controlled hearing aids that use auditory attention decoding (AAD) methods are the next step in offering help. Translating the successes in AAD research to real-world applications poses a number of challenges, including the lack of access to the clean sound sources in the environment with which to compare with the neural signals. We propose a novel framework that combines single-channel speech separation algorithms with AAD.

APPROACH

We present an end-to-end system that (1) receives a single audio channel containing a mixture of speakers that is heard by a listener along with the listener's neural signals, (2) automatically separates the individual speakers in the mixture, (3) determines the attended speaker, and (4) amplifies the attended speaker's voice to assist the listener.

MAIN RESULTS

Using invasive electrophysiology recordings, we identified the regions of the auditory cortex that contribute to AAD. Given appropriate electrode locations, our system is able to decode the attention of subjects and amplify the attended speaker using only the mixed audio. Our quality assessment of the modified audio demonstrates a significant improvement in both subjective and objective speech quality measures.

SIGNIFICANCE

Our novel framework for AAD bridges the gap between the most recent advancements in speech processing technologies and speech prosthesis research and moves us closer to the development of cognitively controlled hearable devices for the hearing impaired.

摘要

目的

听力受损的人在多说话者环境中可能难以跟上对话。目前的助听器可以抑制背景噪音;但是,对于帮助用户在不了解用户正在关注哪个说话者的情况下专注于多个人中的单一对话,几乎无能为力。使用听觉注意力解码 (AAD) 方法的认知控制助听器是提供帮助的下一步。将 AAD 研究中的成功转化为实际应用面临许多挑战,包括缺乏与环境中干净声源的访问,无法与神经信号进行比较。我们提出了一个将单通道语音分离算法与 AAD 相结合的新框架。

方法

我们提出了一个端到端系统,该系统 (1) 接收包含由听众听到的混合说话者的单个音频通道以及听众的神经信号,(2) 自动分离混合中的各个说话者,(3) 确定被关注的说话者,以及 (4) 放大被关注的说话者的声音以帮助听众。

主要结果

使用侵入性电生理学记录,我们确定了听觉皮层中有助于 AAD 的区域。在适当的电极位置下,我们的系统能够使用混合音频解码受试者的注意力并放大被关注的说话者。我们对修改后的音频的质量评估表明,主观和客观语音质量测量都有显著提高。

意义

我们用于 AAD 的新框架弥合了语音处理技术和语音假体研究的最新进展之间的差距,并使我们更接近为听力受损者开发认知控制的可听设备。

相似文献

引用本文的文献

9
Examining cortical tracking of the speech envelope in post-stroke aphasia.研究中风后失语症患者对言语包络的皮层追踪。
Front Hum Neurosci. 2023 Sep 14;17:1122480. doi: 10.3389/fnhum.2023.1122480. eCollection 2023.

本文引用的文献

7
The Neural Consequences of Age-Related Hearing Loss.年龄相关性听力损失的神经后果
Trends Neurosci. 2016 Jul;39(7):486-497. doi: 10.1016/j.tins.2016.05.001. Epub 2016 Jun 1.
9
Identifying the Attended Speaker Using Electrocorticographic (ECoG) Signals.使用皮层脑电图(ECoG)信号识别被关注的说话者。
Brain Comput Interfaces (Abingdon). 2015;2(4):161-173. doi: 10.1080/2326263X.2015.1063363. Epub 2015 Aug 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验