Suppr超能文献

验证用于听觉注意任务中神经跟踪的具有成本效益的 EEG 实验设置。

Validation of cost-efficient EEG experimental setup for neural tracking in an auditory attention task.

机构信息

Department of HY-KIST Bio-Convergence, Hanyang University, Seoul, 04763, Korea.

Center for Intelligent & Interactive Robotics, Artificial Intelligence and Robot Institute, Korea Institute of Science and Technology, Seoul, 02792, Korea.

出版信息

Sci Rep. 2023 Dec 19;13(1):22682. doi: 10.1038/s41598-023-49990-6.

Abstract

When individuals listen to speech, their neural activity phase-locks to the slow temporal rhythm, which is commonly referred to as "neural tracking". The neural tracking mechanism allows for the detection of an attended sound source in a multi-talker situation by decoding neural signals obtained by electroencephalography (EEG), known as auditory attention decoding (AAD). Neural tracking with AAD can be utilized as an objective measurement tool for diverse clinical contexts, and it has potential to be applied to neuro-steered hearing devices. To effectively utilize this technology, it is essential to enhance the accessibility of EEG experimental setup and analysis. The aim of the study was to develop a cost-efficient neural tracking system and validate the feasibility of neural tracking measurement by conducting an AAD task using an offline and real-time decoder model outside the soundproof environment. We devised a neural tracking system capable of conducting AAD experiments using an OpenBCI and Arduino board. Nine participants were recruited to assess the performance of the AAD using the developed system, which involved presenting competing speech signals in an experiment setting without soundproofing. As a result, the offline decoder model demonstrated an average performance of 90%, and real-time decoder model exhibited a performance of 78%. The present study demonstrates the feasibility of implementing neural tracking and AAD using cost-effective devices in a practical environment.

摘要

当个体听言语时,他们的神经活动与慢时变节律锁相,通常被称为“神经追踪”。神经追踪机制允许通过解码脑电图(EEG)获得的神经信号来检测多说话者情况下的注意声源,这被称为听觉注意解码(AAD)。利用 AAD 的神经追踪可以作为各种临床情况下的客观测量工具,并且有可能应用于神经引导的听力设备。为了有效地利用这项技术,必须增强 EEG 实验设置和分析的可及性。本研究旨在开发一种具有成本效益的神经追踪系统,并通过在隔音环境之外使用离线和实时解码器模型进行 AAD 任务来验证神经追踪测量的可行性。我们设计了一种能够使用 OpenBCI 和 Arduino 板进行 AAD 实验的神经追踪系统。招募了 9 名参与者来评估使用开发系统进行 AAD 的性能,其中涉及在没有隔音的实验设置中呈现竞争性言语信号。结果,离线解码器模型的平均性能为 90%,实时解码器模型的性能为 78%。本研究证明了在实际环境中使用具有成本效益的设备实现神经追踪和 AAD 的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90bd/10730561/7fa0b2337f25/41598_2023_49990_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验