Suppr超能文献

通过对瞥见和掩蔽声学事件的颅内反应进行分类来改善听觉注意力解码。

Improving auditory attention decoding by classifying intracranial responses to glimpsed and masked acoustic events.

作者信息

Raghavan Vinay S, O'Sullivan James, Herrero Jose, Bickel Stephan, Mehta Ashesh D, Mesgarani Nima

机构信息

Department of Electrical Engineering, Columbia University, New York, NY, United States.

Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States.

出版信息

Imaging Neurosci (Camb). 2024;2. doi: 10.1162/imag_a_00148. Epub 2024 Apr 26.

Abstract

Listeners with hearing loss have trouble following a conversation in multitalker environments. While modern hearing aids can generally amplify speech, these devices are unable to tune into a target speaker without first knowing to which speaker a user aims to attend. Brain-controlled hearing aids have been proposed using auditory attention decoding (AAD) methods, but current methods use the same model to compare the speech stimulus and neural response, regardless of the dynamic overlap between talkers which is known to influence neural encoding. Here, we propose a novel framework that directly classifies event-related potentials (ERPs) evoked by glimpsed and masked acoustic events to determine whether the source of the event was attended. We present a system that identifies auditory events using the local maxima in the envelope rate of change, assesses the temporal masking of auditory events relative to competing speakers, and utilizes masking-specific ERP classifiers to determine if the source of the event was attended. Using intracranial electrophysiological recordings, we showed that high gamma ERPs from recording sites in auditory cortex can effectively decode the attention of subjects. This method of AAD provides higher accuracy, shorter switch times, and more stable decoding results compared with traditional correlational methods, permitting the quick and accurate detection of changes in a listener's attentional focus. This framework also holds unique potential for detecting instances of divided attention and inattention. Overall, we extend the scope of AAD algorithms by introducing the first linear, direct-classification method for determining a listener's attentional focus that leverages the latest research in multitalker speech perception. This work represents another step toward informing the development of effective and intuitive brain-controlled hearing assistive devices.

摘要

听力损失患者在多说话者环境中难以跟上对话。虽然现代助听器通常可以放大语音,但这些设备在不知道用户想要关注哪个说话者的情况下,无法锁定目标说话者。有人提出使用听觉注意力解码(AAD)方法的脑控助听器,但目前的方法使用相同的模型来比较语音刺激和神经反应,而忽略了已知会影响神经编码的说话者之间的动态重叠。在这里,我们提出了一个新颖的框架,该框架直接对瞥见和掩蔽声学事件诱发的事件相关电位(ERP)进行分类,以确定事件的来源是否被关注。我们提出了一个系统,该系统使用包络变化率的局部最大值来识别听觉事件,评估听觉事件相对于竞争说话者的时间掩蔽,并利用特定于掩蔽的ERP分类器来确定事件的来源是否被关注。使用颅内电生理记录,我们表明来自听觉皮层记录部位的高伽马ERP可以有效地解码受试者的注意力。与传统的相关方法相比,这种AAD方法提供了更高的准确性、更短的切换时间和更稳定的解码结果,能够快速准确地检测听众注意力焦点的变化。该框架在检测注意力分散和注意力不集中的情况方面也具有独特的潜力。总体而言,我们通过引入第一种线性直接分类方法来扩展AAD算法的范围,该方法用于确定听众的注意力焦点,利用了多说话者语音感知的最新研究成果。这项工作朝着为有效且直观的脑控听力辅助设备的开发提供信息又迈出了一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20b3/11759098/43d862762e32/nihms-2009028-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验