The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, National Centre for Plant Gene Research, Beijing 100101, China.
Key laboratory of high magnetic field and Ion beam physical biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
Cell Res. 2017 Sep;27(9):1142-1156. doi: 10.1038/cr.2017.98. Epub 2017 Aug 4.
Achieving increased grain productivity has long been the overriding focus of cereal breeding programs. The ideotype approach has been used to improve rice yield potential at the International Rice Research Institute and in China. However, the genetic basis of yield-related traits in rice remains unclear. Here, we show that a major quantitative trait locus, qNPT1, acts through the determination of a 'new plant type' (NPT) architecture characterized by fewer tillers, sturdier culms and larger panicles, and it encodes a deubiquitinating enzyme with homology to human OTUB1. Downregulation of OsOTUB1 enhances meristematic activity, resulting in reduced tiller number, increased grain number, enhanced grain weight and a consequent increase in grain yield in rice. Unlike human OTUB1, OsOTUB1 can cleave both K48- and K63-linked polyubiquitin. OsOTUB1 interacts with the E2 ubiquitin-conjugating protein OsUBC13 and the squamosa promoter-binding protein-like transcription factor OsSPL14. OsOTUB1 and OsSPL14 share common target genes, and their physical interaction limits K63-linked ubiquitination (K63Ub) of OsSPL14, which in turn promotes K48Ub-dependent proteasomal degradation of OsSPL14. Conversely, loss-of-function of OsOTUB1 is correlated with the accumulation of high levels of OsSPL14, resulting in the NPT architecture. We also demonstrated that pyramiding of high-yielding npt1 and dep1-1 alleles provides a new strategy for increasing rice yield potential above what is currently achievable.
长期以来,提高谷物产量一直是谷物育种计划的首要重点。理想型方法已被用于提高国际水稻研究所和中国的水稻产量潜力。然而,水稻产量相关性状的遗传基础仍不清楚。在这里,我们表明,一个主要的数量性状位点 qNPT1 通过决定一种“新型植物型”(NPT)结构起作用,其特征是分蘖减少、茎秆更坚固和穗更大,它编码一种与人类 OTUB1 同源的去泛素化酶。OsOTUB1 的下调增强了分生组织的活性,导致分蘖数减少、粒数增加、粒重增加,从而使水稻的粒产量增加。与人类 OTUB1 不同,OsOTUB1 可以切割 K48-和 K63 连接的多泛素。OsOTUB1 与 E2 泛素缀合蛋白 OsUBC13 和花椰菜花叶病毒启动子结合蛋白样转录因子 OsSPL14 相互作用。OsOTUB1 和 OsSPL14 具有共同的靶基因,它们的物理相互作用限制了 OsSPL14 的 K63 连接泛素化(K63Ub),从而促进了 OsSPL14 的 K48Ub 依赖性蛋白酶体降解。相反,OsOTUB1 的功能丧失与高水平 OsSPL14 的积累相关,导致 NPT 结构。我们还证明,高产 npt1 和 dep1-1 等位基因的基因叠加为提高水稻产量潜力提供了一种新策略,超过了目前可实现的水平。