Suppr超能文献

用于建模和模拟复杂细菌膜与脂多糖的 CHARMM-GUI Martini Maker。

CHARMM-GUI Martini Maker for modeling and simulation of complex bacterial membranes with lipopolysaccharides.

机构信息

School of Chemistry, University of Southampton, Southampton, SO17 1BJ, United Kingdom.

Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, Groningen, AG, 9747, The Netherlands.

出版信息

J Comput Chem. 2017 Oct 15;38(27):2354-2363. doi: 10.1002/jcc.24895. Epub 2017 Aug 3.

Abstract

A complex cell envelope, composed of a mixture of lipid types including lipopolysaccharides, protects bacteria from the external environment. Clearly, the proteins embedded within the various components of the cell envelope have an intricate relationship with their local environment. Therefore, to obtain meaningful results, molecular simulations need to mimic as far as possible this chemically heterogeneous system. However, setting up such systems for computational studies is far from trivial, and consequently the vast majority of simulations of outer membrane proteins still rely on oversimplified phospholipid membrane models. This work presents an update of CHARMM-GUI Martini Maker for coarse-grained modeling and simulation of complex bacterial membranes with lipopolysaccharides. The qualities of the outer membrane systems generated by Martini Maker are validated by simulating them in bilayer, vesicle, nanodisc, and micelle environments (with and without outer membrane proteins) using the Martini force field. We expect this new feature in Martini Maker to be a useful tool for modeling large, complicated bacterial outer membrane systems in a user-friendly manner. © 2017 Wiley Periodicals, Inc.

摘要

复杂的细胞包膜由包括脂多糖在内的多种脂质类型组成,可保护细菌免受外部环境的侵害。显然,嵌入细胞包膜各个成分中的蛋白质与其局部环境之间存在着复杂的关系。因此,为了获得有意义的结果,分子模拟需要尽可能模拟这种化学异质系统。然而,为计算研究设置此类系统远非易事,因此,绝大多数外膜蛋白的模拟仍然依赖于过于简化的磷脂膜模型。这项工作介绍了 CHARMM-GUI Martini Maker 的更新,用于用脂多糖对复杂细菌膜进行粗粒度建模和模拟。通过使用 Martini 力场在双层膜、囊泡、纳米盘和胶束环境(有和没有外膜蛋白)中模拟由 Martini Maker 生成的外膜系统,验证了这些外膜系统的质量。我们希望 Martini Maker 中的这个新功能成为以用户友好的方式对大型复杂细菌外膜系统进行建模的有用工具。© 2017 威利父子公司

相似文献

1
CHARMM-GUI Martini Maker for modeling and simulation of complex bacterial membranes with lipopolysaccharides.
J Comput Chem. 2017 Oct 15;38(27):2354-2363. doi: 10.1002/jcc.24895. Epub 2017 Aug 3.
2
CHARMM-GUI Martini Maker for Coarse-Grained Simulations with the Martini Force Field.
J Chem Theory Comput. 2015 Sep 8;11(9):4486-94. doi: 10.1021/acs.jctc.5b00513. Epub 2015 Aug 27.
3
CHARMM-GUI 10 years for biomolecular modeling and simulation.
J Comput Chem. 2017 Jun 5;38(15):1114-1124. doi: 10.1002/jcc.24660. Epub 2016 Nov 14.
4
CHARMM-GUI Nanodisc Builder for modeling and simulation of various nanodisc systems.
J Comput Chem. 2019 Mar 15;40(7):893-899. doi: 10.1002/jcc.25773.
5
Preparing Membrane Proteins for Simulation Using CHARMM-GUI.
Methods Mol Biol. 2021;2302:237-251. doi: 10.1007/978-1-0716-1394-8_13.
6
CHARMM-GUI PACE CG Builder for solution, micelle, and bilayer coarse-grained simulations.
J Chem Inf Model. 2014 Mar 24;54(3):1003-9. doi: 10.1021/ci500007n. Epub 2014 Mar 13.
7
A MARTINI extension for Pseudomonas aeruginosa PAO1 lipopolysaccharide.
J Mol Graph Model. 2016 Jan;63:125-33. doi: 10.1016/j.jmgm.2015.12.002. Epub 2015 Dec 15.
8
Structural basis for maintenance of bacterial outer membrane lipid asymmetry.
Nat Microbiol. 2017 Dec;2(12):1616-1623. doi: 10.1038/s41564-017-0046-x. Epub 2017 Oct 16.
9
Atomistic and Coarse Grain Simulations of the Cell Envelope of Gram-Negative Bacteria: What Have We Learned?
Acc Chem Res. 2019 Jan 15;52(1):180-188. doi: 10.1021/acs.accounts.8b00377. Epub 2018 Dec 18.
10
Living on the edge: Simulations of bacterial outer-membrane proteins.
Biochim Biophys Acta. 2016 Jul;1858(7 Pt B):1753-9. doi: 10.1016/j.bbamem.2016.01.020. Epub 2016 Jan 28.

引用本文的文献

1
Opsins are Phospholipid Scramblases in All Domains of Life.
bioRxiv. 2025 Aug 18:2025.08.17.670764. doi: 10.1101/2025.08.17.670764.
2
Cytochrome c Facilitates Binding between Lipid Bilayers and Citrate-Coated Gold Nanoparticles in Coarse-Grained Simulations.
J Chem Theory Comput. 2025 Aug 12;21(15):7605-7614. doi: 10.1021/acs.jctc.5c00454. Epub 2025 Jul 18.
4
A porin-like protein used by bacterial predators defines a wider lipid-trapping superfamily.
Nat Commun. 2025 Jul 5;16(1):6213. doi: 10.1038/s41467-025-61633-0.
5
Creating Coarse-Grained Systems with COBY: Toward Higher Accuracy of Complex Biological Systems.
J Chem Inf Model. 2025 May 26;65(10):4760-4766. doi: 10.1021/acs.jcim.5c00069. Epub 2025 May 12.
7
Impact of pathogenic mutations of the GLUT1 glucose transporter on solute carrier dynamics using ComDYN enhanced sampling.
F1000Res. 2022 Jun 13;8:322. doi: 10.12688/f1000research.18553.2. eCollection 2019.
8
Computational Methods for Modeling Lipid-Mediated Active Pharmaceutical Ingredient Delivery.
Mol Pharm. 2025 Mar 3;22(3):1110-1141. doi: 10.1021/acs.molpharmaceut.4c00744. Epub 2025 Jan 29.
9
10
Effects of Lipid Headgroups on the Mechanical Properties and In Vitro Cellular Internalization of Liposomes.
Langmuir. 2025 Feb 4;41(4):2600-2618. doi: 10.1021/acs.langmuir.4c04363. Epub 2025 Jan 20.

本文引用的文献

1
Exchange pathways of plastoquinone and plastoquinol in the photosystem II complex.
Nat Commun. 2017 May 10;8:15214. doi: 10.1038/ncomms15214.
2
PyCGTOOL: Automated Generation of Coarse-Grained Molecular Dynamics Models from Atomistic Trajectories.
J Chem Inf Model. 2017 Apr 24;57(4):650-656. doi: 10.1021/acs.jcim.7b00096. Epub 2017 Apr 4.
3
Through the Lipopolysaccharide Glass: A Potent Antimicrobial Peptide Induces Phase Changes in Membranes.
Biochemistry. 2017 Mar 21;56(11):1672-1679. doi: 10.1021/acs.biochem.6b01063. Epub 2017 Mar 7.
4
Nanodiscs in Membrane Biochemistry and Biophysics.
Chem Rev. 2017 Mar 22;117(6):4669-4713. doi: 10.1021/acs.chemrev.6b00690. Epub 2017 Feb 8.
5
Modeling and simulation of bacterial outer membranes and interactions with membrane proteins.
Curr Opin Struct Biol. 2017 Apr;43:131-140. doi: 10.1016/j.sbi.2017.01.003. Epub 2017 Jan 31.
6
High-Throughput Simulations Reveal Membrane-Mediated Effects of Alcohols on MscL Gating.
J Am Chem Soc. 2017 Feb 22;139(7):2664-2671. doi: 10.1021/jacs.6b11091. Epub 2017 Feb 10.
7
Refinement of OprH-LPS Interactions by Molecular Simulations.
Biophys J. 2017 Jan 24;112(2):346-355. doi: 10.1016/j.bpj.2016.12.006.
8
Solution structure of discoidal high-density lipoprotein particles with a shortened apolipoprotein A-I.
Nat Struct Mol Biol. 2017 Feb;24(2):187-193. doi: 10.1038/nsmb.3345. Epub 2016 Dec 26.
9
CHARMM-GUI 10 years for biomolecular modeling and simulation.
J Comput Chem. 2017 Jun 5;38(15):1114-1124. doi: 10.1002/jcc.24660. Epub 2016 Nov 14.
10
Bilayer Properties of Lipid A from Various Gram-Negative Bacteria.
Biophys J. 2016 Oct 18;111(8):1750-1760. doi: 10.1016/j.bpj.2016.09.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验