Department of Materials Science and Engineering, Iowa State University , 2220 Hoover Hall, Ames, Iowa 50011, United States.
Langmuir. 2017 Nov 28;33(47):13451-13467. doi: 10.1021/acs.langmuir.7b01937. Epub 2017 Aug 18.
Self-assembled monolayers (SAMs) have emerged as a simple platform technology and hence have been broadly studied. With advances in state-of-the-art fabrication and characterization methods, new insights into SAM structure and related properties have been delineated, albeit with some discrepancies and/or incoherencies. Some discrepancies, especially between experimental and theoretical work, are in part due to the misunderstanding of subtle structural features such as phase evolution and SAM quality. Recent work has, however, shown that simple techniques, such as the measurement of static contact angles, can be used to delineate otherwise complex properties of the SAM, especially when complemented by other more advanced techniques. In this article, we highlight the effect of nanoscale substrate asperities and molecular chain length on the SAM structure and associated properties. First, surfaces with tunable roughness are prepared on both Au and Ag, and their corresponding n-alkanethiolate SAMs are characterized through wetting and spectroscopy. From these data, chain-length- and substrate-morphology-dependent limits to the odd-even effect (structure and properties vary with the number of carbons in the molecules and the nature of the substrate), parametrization of gauche defect densities, and structural phase evolution (liquidlike, waxy, crystalline interfaces) are deduced. An evaluation of the correlation between the effect of roughness and the components of surface tension (polar-γ and dispersive-γ) reveals that wetting, at nanoscale rough surfaces, evolves proportionally with the ratio of the two components of surface tension. The evolution of conformational order is captured over a range of molecular lengths and parametrized through a dimensionless number, χ. By deploying a well-known tensiometry technique (herein the liquid is used to characterize the solid, hence the term inverse tensiometry) to characterize SAMs, we demonstrate that complex molecular-level phenomena in SAMs can be understood through simplicity.
自组装单分子层 (SAMs) 已经成为一种简单的平台技术,因此得到了广泛的研究。随着最先进的制造和表征方法的进步,人们对 SAM 结构和相关性质有了新的认识,尽管存在一些差异和/或不和谐之处。一些差异,特别是实验和理论工作之间的差异,部分原因是对微妙结构特征(如相演化和 SAM 质量)的误解。然而,最近的工作表明,简单的技术,如静态接触角的测量,可以用于描绘 SAM 的复杂性质,特别是当与其他更先进的技术相结合时。在本文中,我们强调了纳米级基底粗糙度和分子链长对 SAM 结构和相关性质的影响。首先,在 Au 和 Ag 上制备具有可调粗糙度的表面,并通过润湿性和光谱学对相应的 n-烷硫醇 SAM 进行表征。从这些数据中,得出了与链长和基底形貌有关的奇数-偶数效应(结构和性质随分子中的碳原子数和基底的性质而变化)、 gauche 缺陷密度的参数化以及结构相演化(液态、蜡状、结晶界面)的限制。对粗糙度效应与表面张力的两个分量(极性γ和色散γ)之间的相关性的评估表明,在纳米级粗糙表面上的润湿与表面张力的两个分量的比值成正比。构象有序性的演化在一系列分子长度范围内进行,并通过无量纲数 χ 进行参数化。通过采用一种著名的张力计技术(此处液体用于表征固体,因此术语为逆张力计)来表征 SAM,我们证明了 SAM 中复杂的分子级现象可以通过简单性来理解。