Suppr超能文献

2 型糖尿病患者血管风险预测的非传统生物标志物及标志物组合的比较:爱丁堡 2 型糖尿病研究。

Comparison of non-traditional biomarkers, and combinations of biomarkers, for vascular risk prediction in people with type 2 diabetes: The Edinburgh Type 2 Diabetes Study.

机构信息

Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland, UK.

Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland, UK; Edinburgh Clinical Trials Unit, University of Edinburgh, Scotland, UK.

出版信息

Atherosclerosis. 2017 Sep;264:67-73. doi: 10.1016/j.atherosclerosis.2017.07.009. Epub 2017 Jul 12.

Abstract

BACKGROUND AND AIMS

We aimed at comparing the impact of multiple non-traditional biomarkers (ankle brachial pressure index (ABI), N-terminal pro-brain natriuretic peptide (NT-proBNP), high sensitivity cardiac troponin (hs-cTnT), gamma-glutamyl transpeptidase (GGT) and four markers of systemic inflammation), both individually and in combination, on cardiovascular risk prediction, over and above traditional risk factors incorporated in the QRISK2 score, in older people with type 2 diabetes.

METHODS

We conducted a prospective study of 1066 men and women aged 60-75 years with type 2 diabetes mellitus, living in Lothian, Scotland.

RESULTS

After 8 years, 205 cardiovascular events occurred. Higher levels of hs-cTNT and NT-proBNP and lower ABI at baseline were associated with increased risk of CV events, independently of traditional risk factors (basic model). The C statistic of 0.722 (95% CI 0.681, 0.763) for the basic model increased on addition of individual biomarkers, most markedly for hs-cTnT (0.732; 0.690, 0.774)). Models including different combinations of biomarkers had even greater C statistics, with the highest for ABI, hs-cTnT and GGT combined (0.740; 0.699, 0.781).

CONCLUSIONS

Individually, hs-cTnT appeared to be the most promising biomarker in terms of improving vascular risk prediction in people with type 2 diabetes, over and above traditional risk factors incorporated in the QRISK2 score. Combining several non-traditional biomarkers added further predictive value, and this approach merits further investigation when developing cost effective risk prediction tools for use in clinical practice.

摘要

背景与目的

我们旨在比较多种非传统生物标志物(踝臂血压指数(ABI)、N 端脑利钠肽前体(NT-proBNP)、高敏心肌肌钙蛋白(hs-cTnT)、γ-谷氨酰转肽酶(GGT)和 4 种全身炎症标志物)的单独和联合应用对心血管风险的预测作用,这些标志物在传统 QRISK2 评分危险因素之外,对 2 型糖尿病老年患者的影响。

方法

我们进行了一项前瞻性研究,纳入了居住在苏格兰洛锡安的 1066 名年龄在 60-75 岁之间的 2 型糖尿病患者。

结果

8 年后,共发生了 205 例心血管事件。基线时 hs-cTNT 和 NT-proBNP 水平较高,ABI 较低与 CV 事件风险增加相关,且独立于传统危险因素(基础模型)。基础模型的 C 统计量为 0.722(95%CI 0.681,0.763),加入单个生物标志物后有所提高,hs-cTnT 的提高最显著(0.732;0.690,0.774))。包含不同生物标志物组合的模型具有更高的 C 统计量,其中以 ABI、hs-cTnT 和 GGT 联合模型的 C 统计量最高(0.740;0.699,0.781)。

结论

就 2 型糖尿病患者血管风险预测而言,hs-cTnT 似乎是最有前途的生物标志物,优于 QRISK2 评分中包含的传统危险因素。联合几种非传统生物标志物可进一步增加预测价值,在开发用于临床实践的具有成本效益的风险预测工具时,值得进一步研究。

相似文献

引用本文的文献

本文引用的文献

6
Circulating gamma glutamyltransferase and prediction of cardiovascular disease.循环γ-谷氨酰转移酶与心血管疾病的预测
Atherosclerosis. 2015 Feb;238(2):356-64. doi: 10.1016/j.atherosclerosis.2014.12.045. Epub 2014 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验