Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada.
Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada.
Biochim Biophys Acta Gen Subj. 2017 Nov;1861(11 Pt A):2822-2829. doi: 10.1016/j.bbagen.2017.07.027. Epub 2017 Aug 2.
To meet its exceptionally high energy demands, the heart relies largely on fatty acid oxidation, which then drives the oxidative phosphorylation system in mitochondria. Each day, this system produces about 6kg of ATP to sustain heart function. Fatty acid oxidation is sometimes associated with high rates of mitochondrial reactive oxygen species (ROS) production. By definition, ROS are singlet electron intermediates formed during the partial reduction of oxygen to water and they include radical and non-radical intermediates like superoxide, hydrogen peroxide and hydroxyl radical. Superoxide can also interact with nitric oxide to produce peroxynitrite that in turn can give rise to other radical or non-radical reactive nitrogen species (RNS) like nitrogen dioxide, dinitrogen trioxide and others. While mitochondrial and cellular functions can be impaired by ROS if they accumulate, under normal physiological conditions ROS are important signaling molecules in the cardiovascular system. A fine balance between ROS production and antioxidant systems, including glutathione redox, is essential in the heart; otherwise the ensuing damage can contribute to pathogenic processes, which can culminate in endothelial dysfunction, atherosclerosis, hypertension, cardiac hypertrophy, arrhythmias, myocardial ischemia/reperfusion damage, and heart failure. Here we provide a succinct review of recent findings.
为了满足其极高的能量需求,心脏主要依赖脂肪酸氧化,进而驱动线粒体中的氧化磷酸化系统。每天,该系统产生约 6kg 的 ATP 来维持心脏功能。脂肪酸氧化有时与线粒体活性氧(ROS)产生的高速度有关。根据定义,ROS 是在氧气部分还原为水的过程中形成的单电子中间体,它们包括自由基和非自由基中间体,如超氧自由基、过氧化氢和羟自由基。超氧自由基还可以与一氧化氮相互作用产生过氧亚硝酸盐,进而产生其他自由基或非自由基活性氮物种(RNS),如二氧化氮、三氧化二氮等。虽然如果 ROS 积累,线粒体和细胞功能可能会受到损害,但在正常生理条件下,ROS 是心血管系统中的重要信号分子。在心脏中,ROS 的产生与抗氧化系统(包括谷胱甘肽氧化还原)之间需要保持精细的平衡;否则,随之而来的损伤可能会导致致病过程,最终导致内皮功能障碍、动脉粥样硬化、高血压、心肌肥厚、心律失常、心肌缺血/再灌注损伤和心力衰竭。在这里,我们提供了对最近发现的简要回顾。