Suppr超能文献

基于图像的主动脉根部浸入边界模型。

Image-based immersed boundary model of the aortic root.

机构信息

Department of Mathematics, University of North Carolina, Chapel Hill, NC, USA.

Medical Computing Group, Kitware, Inc., Carrboro, NC, USA.

出版信息

Med Eng Phys. 2017 Sep;47:72-84. doi: 10.1016/j.medengphy.2017.05.007. Epub 2017 Aug 2.

Abstract

Each year, approximately 300,000 heart valve repair or replacement procedures are performed worldwide, including approximately 70,000 aortic valve replacement surgeries in the United States alone. Computational platforms for simulating cardiovascular devices such as prosthetic heart valves promise to improve device design and assist in treatment planning, including patient-specific device selection. This paper describes progress in constructing anatomically and physiologically realistic immersed boundary (IB) models of the dynamics of the aortic root and ascending aorta. This work builds on earlier IB models of fluid-structure interaction (FSI) in the aortic root, which previously achieved realistic hemodynamics over multiple cardiac cycles, but which also were limited to simplified aortic geometries and idealized descriptions of the biomechanics of the aortic valve cusps. By contrast, the model described herein uses an anatomical geometry reconstructed from patient-specific computed tomography angiography (CTA) data, and employs a description of the elasticity of the aortic valve leaflets based on a fiber-reinforced constitutive model fit to experimental tensile test data. The resulting model generates physiological pressures in both systole and diastole, and yields realistic cardiac output and stroke volume at physiological Reynolds numbers. Contact between the valve leaflets during diastole is handled automatically by the IB method, yielding a fully competent valve model that supports a physiological diastolic pressure load without regurgitation. Numerical tests show that the model is able to resolve the leaflet biomechanics in diastole and early systole at practical grid spacings. The model is also used to examine differences in the mechanics and fluid dynamics yielded by fresh valve leaflets and glutaraldehyde-fixed leaflets similar to those used in bioprosthetic heart valves. Although there are large differences in the leaflet deformations during diastole, the differences in the open configurations of the valve models are relatively small, and nearly identical hemodynamics are obtained in all cases considered.

摘要

每年,全球约有 30 万例心脏瓣膜修复或置换手术,仅美国就有约 7 万例主动脉瓣置换手术。用于模拟心脏瓣膜等心血管设备的计算平台有望改进设备设计并协助治疗计划,包括患者特定的设备选择。本文描述了构建主动脉根部和升主动脉动力学的解剖学和生理学逼真浸入边界 (IB) 模型的进展。这项工作建立在以前的主动脉根部流体-结构相互作用 (FSI) 的 IB 模型的基础上,该模型以前在多个心动周期内实现了真实的血液动力学,但也仅限于简化的主动脉几何形状和主动脉瓣叶瓣的生物力学理想化描述。相比之下,本文中描述的模型使用从患者特定的计算机断层血管造影 (CTA) 数据重建的解剖学几何形状,并采用基于纤维增强本构模型的主动脉瓣叶弹性描述,该模型拟合实验拉伸测试数据。所得到的模型在收缩期和舒张期都会产生生理压力,并在生理雷诺数下产生现实的心输出量和每搏输出量。瓣叶在舒张期的接触通过 IB 方法自动处理,产生一个完全有能力的瓣膜模型,支持无反流的生理舒张期压力负荷。数值测试表明,该模型能够在实际网格间距下解析舒张期和早期收缩期的瓣叶生物力学。该模型还用于研究新鲜瓣叶和戊二醛固定瓣叶产生的力学和流体动力学差异,类似于生物假体心脏瓣膜中使用的瓣叶。尽管在舒张期瓣叶的变形有很大差异,但瓣膜模型的开口配置差异相对较小,在所有考虑的情况下都获得了几乎相同的血液动力学。

相似文献

1
Image-based immersed boundary model of the aortic root.
Med Eng Phys. 2017 Sep;47:72-84. doi: 10.1016/j.medengphy.2017.05.007. Epub 2017 Aug 2.
2
Immersed boundary-finite element model of fluid-structure interaction in the aortic root.
Theor Comput Fluid Dyn. 2016 Apr;30(1):139-164. doi: 10.1007/s00162-015-0374-5. Epub 2015 Dec 19.
3
Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions.
Int J Numer Method Biomed Eng. 2012 Mar;28(3):317-45. doi: 10.1002/cnm.1445.
4
On the Modeling of Patient-Specific Transcatheter Aortic Valve Replacement: A Fluid-Structure Interaction Approach.
Cardiovasc Eng Technol. 2019 Sep;10(3):437-455. doi: 10.1007/s13239-019-00427-0. Epub 2019 Jul 15.
5
Patient-Specific Immersed Finite Element-Difference Model of Transcatheter Aortic Valve Replacement.
Ann Biomed Eng. 2023 Jan;51(1):103-116. doi: 10.1007/s10439-022-03047-3. Epub 2022 Oct 20.
6
A design-based model of the aortic valve for fluid-structure interaction.
Biomech Model Mechanobiol. 2021 Dec;20(6):2413-2435. doi: 10.1007/s10237-021-01516-7. Epub 2021 Sep 21.
8
Fluid-Structure Interaction Study of Transcatheter Aortic Valve Dynamics Using Smoothed Particle Hydrodynamics.
Cardiovasc Eng Technol. 2016 Dec;7(4):374-388. doi: 10.1007/s13239-016-0285-7. Epub 2016 Nov 14.
9
On the opening mechanism of the aortic valve: some observations from simulations.
J Med Eng Technol. 2003 Nov-Dec;27(6):259-66. doi: 10.1080/0309190031000096621.
10
Fluid-structure interaction of a pulsatile flow with an aortic valve model: A combined experimental and numerical study.
Int J Numer Method Biomed Eng. 2018 Apr;34(4):e2945. doi: 10.1002/cnm.2945. Epub 2018 Jan 25.

引用本文的文献

1
LOCAL DIVERGENCE-FREE IMMERSED FINITE ELEMENT-DIFFERENCE METHOD USING COMPOSITE B-SPLINES.
Adv Comput Sci Eng. 2025 Jun;4:16-56. doi: 10.3934/acse.2025011.
2
Simulating cardiac fluid dynamics in the human heart.
PNAS Nexus. 2024 Sep 10;3(10):pgae392. doi: 10.1093/pnasnexus/pgae392. eCollection 2024 Oct.
3
Benchmarking the Immersed Boundary Method for Viscoelastic Flows.
J Comput Phys. 2024 Jun 1;506. doi: 10.1016/j.jcp.2024.112888. Epub 2024 Feb 28.
4
Semi-Automated Construction of Patient-Specific Aortic Valves from Computed Tomography Images.
Ann Biomed Eng. 2023 Jan;51(1):189-199. doi: 10.1007/s10439-022-03075-z. Epub 2022 Oct 8.
5
On the Lagrangian-Eulerian Coupling in the Immersed Finite Element/Difference Method.
J Comput Phys. 2022 May 15;457. doi: 10.1016/j.jcp.2022.111042. Epub 2022 Feb 9.
6
A design-based model of the aortic valve for fluid-structure interaction.
Biomech Model Mechanobiol. 2021 Dec;20(6):2413-2435. doi: 10.1007/s10237-021-01516-7. Epub 2021 Sep 21.
8
Computational Modeling of Right Ventricular Motion and Intracardiac Flow in Repaired Tetralogy of Fallot.
Cardiovasc Eng Technol. 2022 Feb;13(1):41-54. doi: 10.1007/s13239-021-00558-3. Epub 2021 Jun 24.
9
Fluid-Structure Interaction Models of Bioprosthetic Heart Valve Dynamics in an Experimental Pulse Duplicator.
Ann Biomed Eng. 2020 May;48(5):1475-1490. doi: 10.1007/s10439-020-02466-4. Epub 2020 Feb 7.
10
An Immersed Interface Method for Discrete Surfaces.
J Comput Phys. 2020 Jan 1;400. doi: 10.1016/j.jcp.2019.07.052. Epub 2019 Jul 29.

本文引用的文献

1
Computational comparison of aortic root stresses in presence of stentless and stented aortic valve bio-prostheses.
Comput Methods Biomech Biomed Engin. 2017 Feb;20(2):171-181. doi: 10.1080/10255842.2016.1207171. Epub 2016 Jul 26.
2
Immersed boundary-finite element model of fluid-structure interaction in the aortic root.
Theor Comput Fluid Dyn. 2016 Apr;30(1):139-164. doi: 10.1007/s00162-015-0374-5. Epub 2015 Dec 19.
3
Imaging analysis of collagen fiber networks in cusps of porcine aortic valves: effect of their local distribution and alignment on valve functionality.
Comput Methods Biomech Biomed Engin. 2016;19(9):1002-8. doi: 10.1080/10255842.2015.1088009. Epub 2015 Sep 25.
5
Numerical modeling of heart valves using resistive Eulerian surfaces.
Int J Numer Method Biomed Eng. 2016 May;32(5). doi: 10.1002/cnm.2743. Epub 2015 Sep 23.
6
Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions.
Int J Numer Method Biomed Eng. 2012 Mar;28(3):317-45. doi: 10.1002/cnm.1445.
8
Subject-specific finite-element modeling of normal aortic valve biomechanics from 3D+t TEE images.
Med Image Anal. 2015 Feb;20(1):162-72. doi: 10.1016/j.media.2014.11.003. Epub 2014 Nov 15.
9
Quasi-static image-based immersed boundary-finite element model of left ventricle under diastolic loading.
Int J Numer Method Biomed Eng. 2014 Nov;30(11):1199-222. doi: 10.1002/cnm.2652. Epub 2014 May 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验