Suppr超能文献

使用基于T样条的参数化设计和冯氏材料模型对生物人工心脏瓣膜进行动态和流固耦合相互作用模拟。

Dynamic and fluid-structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models.

作者信息

Hsu Ming-Chen, Kamensky David, Xu Fei, Kiendl Josef, Wang Chenglong, Wu Michael C H, Mineroff Joshua, Reali Alessandro, Bazilevs Yuri, Sacks Michael S

机构信息

Department of Mechanical Engineering, Iowa State University, 2025 Black Engineering, Ames, IA 50011, USA.

Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, TX 78712, USA.

出版信息

Comput Mech. 2015 Jun;55(6):1211-1225. doi: 10.1007/s00466-015-1166-x.

Abstract

This paper builds on a recently developed immersogeometric fluid-structure interaction (FSI) methodology for bioprosthetic heart valve (BHV) modeling and simulation. It enhances the proposed framework in the areas of geometry design and constitutive modeling. With these enhancements, BHV FSI simulations may be performed with greater levels of automation, robustness and physical realism. In addition, the paper presents a comparison between FSI analysis and standalone structural dynamics simulation driven by prescribed transvalvular pressure, the latter being a more common modeling choice for this class of problems. The FSI computation achieved better physiological realism in predicting the valve leaflet deformation than its standalone structural dynamics counterpart.

摘要

本文基于最近开发的用于生物人工心脏瓣膜(BHV)建模与仿真的浸入式几何流体-结构相互作用(FSI)方法。它在几何设计和本构建模领域对所提出的框架进行了改进。通过这些改进,可以以更高的自动化程度、鲁棒性和物理真实性来进行BHV FSI仿真。此外,本文还比较了FSI分析与由规定跨瓣压力驱动的独立结构动力学仿真,后者是此类问题更常见的建模选择。与独立的结构动力学仿真相比,FSI计算在预测瓣膜小叶变形方面实现了更好的生理真实性。

相似文献

2
An anisotropic constitutive model for immersogeometric fluid-structure interaction analysis of bioprosthetic heart valves.
J Biomech. 2018 Jun 6;74:23-31. doi: 10.1016/j.jbiomech.2018.04.012. Epub 2018 Apr 12.
3
An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves.
Comput Methods Appl Mech Eng. 2015 Feb 1;284:1005-1053. doi: 10.1016/j.cma.2014.10.040.
4
A framework for designing patient-specific bioprosthetic heart valves using immersogeometric fluid-structure interaction analysis.
Int J Numer Method Biomed Eng. 2018 Apr;34(4):e2938. doi: 10.1002/cnm.2938. Epub 2018 Jan 25.
7
Immersogeometric cardiovascular fluid-structure interaction analysis with divergence-conforming B-splines.
Comput Methods Appl Mech Eng. 2017 Feb 1;314:408-472. doi: 10.1016/j.cma.2016.07.028. Epub 2016 Aug 4.
8
Immersogeometric fluid-structure interaction modeling and simulation of transcatheter aortic valve replacement.
Comput Methods Appl Mech Eng. 2019 Dec 1;357. doi: 10.1016/j.cma.2019.07.025. Epub 2019 Aug 14.
9
Fluid-Structure Interaction Study of Transcatheter Aortic Valve Dynamics Using Smoothed Particle Hydrodynamics.
Cardiovasc Eng Technol. 2016 Dec;7(4):374-388. doi: 10.1007/s13239-016-0285-7. Epub 2016 Nov 14.
10
Dynamic simulation pericardial bioprosthetic heart valve function.
J Biomech Eng. 2006 Oct;128(5):717-24. doi: 10.1115/1.2244578.

引用本文的文献

1
A reduced 3D-0D fluid-structure interaction model of the aortic valve that includes leaflet curvature.
Biomech Model Mechanobiol. 2025 Aug;24(4):1169-1189. doi: 10.1007/s10237-025-01960-9. Epub 2025 Jun 1.
2
Computational construction and design optimization of a novel tri-tube heart valve.
Biomech Model Mechanobiol. 2025 Jun;24(3):1103-1121. doi: 10.1007/s10237-025-01956-5. Epub 2025 May 26.
3
A Neural Network Finite Element Trileaflet Heart Valve Model Incorporating Multi-Body Contact.
Int J Numer Method Biomed Eng. 2025 Apr;41(4):e70038. doi: 10.1002/cnm.70038.
4
Homogenized multiscale modelling of an electrically active double poroelastic material representing the myocardium.
Biomech Model Mechanobiol. 2025 Apr;24(2):635-662. doi: 10.1007/s10237-025-01931-0. Epub 2025 Feb 26.
6
Current progress toward isogeometric modeling of the heart biophysics.
Biophys Rev (Melville). 2023 Nov 13;4(4):041301. doi: 10.1063/5.0152690. eCollection 2023 Dec.
7
Computational methods for biofabrication in tissue engineering and regenerative medicine - a literature review.
Comput Struct Biotechnol J. 2024 Jan 2;23:601-616. doi: 10.1016/j.csbj.2023.12.035. eCollection 2024 Dec.
9
Perfect prosthetic heart valve: generative design with machine learning, modeling, and optimization.
Front Bioeng Biotechnol. 2023 Sep 15;11:1238130. doi: 10.3389/fbioe.2023.1238130. eCollection 2023.
10
Comparison of Immersed Boundary Simulations of Heart Valve Hemodynamics Against In Vitro 4D Flow MRI Data.
Ann Biomed Eng. 2023 Oct;51(10):2267-2288. doi: 10.1007/s10439-023-03266-2. Epub 2023 Jun 28.

本文引用的文献

1
Isogeometric Kirchhoff-Love shell formulations for biological membranes.
Comput Methods Appl Mech Eng. 2015 Aug 15;293:328-347. doi: 10.1016/j.cma.2015.05.006.
3
An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves.
Comput Methods Appl Mech Eng. 2015 Feb 1;284:1005-1053. doi: 10.1016/j.cma.2014.10.040.
4
Simulation of planar soft tissues using a structural constitutive model: Finite element implementation and validation.
J Biomech. 2014 Jun 27;47(9):2043-54. doi: 10.1016/j.jbiomech.2014.03.014. Epub 2014 Mar 21.
5
Patient-specific simulation of a stentless aortic valve implant: the impact of fibres on leaflet performance.
Comput Methods Biomech Biomed Engin. 2014;17(3):277-85. doi: 10.1080/10255842.2012.681645. Epub 2012 May 3.
7
A numerical investigation of blood damage in the hinge area of aortic bileaflet mechanical heart valves during the leakage phase.
Ann Biomed Eng. 2012 Jul;40(7):1468-85. doi: 10.1007/s10439-011-0502-3. Epub 2012 Jan 4.
10
Turbulence characteristics downstream of a new trileaflet mechanical heart valve.
ASAIO J. 2011 May-Jun;57(3):188-96. doi: 10.1097/MAT.0b013e318213f9c2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验