Hsu Ming-Chen, Kamensky David, Xu Fei, Kiendl Josef, Wang Chenglong, Wu Michael C H, Mineroff Joshua, Reali Alessandro, Bazilevs Yuri, Sacks Michael S
Department of Mechanical Engineering, Iowa State University, 2025 Black Engineering, Ames, IA 50011, USA.
Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, TX 78712, USA.
Comput Mech. 2015 Jun;55(6):1211-1225. doi: 10.1007/s00466-015-1166-x.
This paper builds on a recently developed immersogeometric fluid-structure interaction (FSI) methodology for bioprosthetic heart valve (BHV) modeling and simulation. It enhances the proposed framework in the areas of geometry design and constitutive modeling. With these enhancements, BHV FSI simulations may be performed with greater levels of automation, robustness and physical realism. In addition, the paper presents a comparison between FSI analysis and standalone structural dynamics simulation driven by prescribed transvalvular pressure, the latter being a more common modeling choice for this class of problems. The FSI computation achieved better physiological realism in predicting the valve leaflet deformation than its standalone structural dynamics counterpart.
本文基于最近开发的用于生物人工心脏瓣膜(BHV)建模与仿真的浸入式几何流体-结构相互作用(FSI)方法。它在几何设计和本构建模领域对所提出的框架进行了改进。通过这些改进,可以以更高的自动化程度、鲁棒性和物理真实性来进行BHV FSI仿真。此外,本文还比较了FSI分析与由规定跨瓣压力驱动的独立结构动力学仿真,后者是此类问题更常见的建模选择。与独立的结构动力学仿真相比,FSI计算在预测瓣膜小叶变形方面实现了更好的生理真实性。