Suppr超能文献

使用聚合物纳米颗粒序贯递送厄洛替尼和阿霉素以增强三阴性乳腺癌治疗效果

Sequential delivery of erlotinib and doxorubicin for enhanced triple negative Breast cancer treatment using polymeric nanoparticle.

作者信息

Zhou Zilan, Kennell Carly, Jafari Mina, Lee Joo-Youp, Ruiz-Torres Sasha J, Waltz Susan E, Lee Jing-Huei

机构信息

Chemical Engineering Program, Department of Biomedical, Environmental, and Chemical Engineering, University of Cincinnati, Cincinnati, OH 45221-0012, USA.

Chemical Engineering Program, Department of Biomedical, Environmental, and Chemical Engineering, University of Cincinnati, Cincinnati, OH 45221-0012, USA.

出版信息

Int J Pharm. 2017 Sep 15;530(1-2):300-307. doi: 10.1016/j.ijpharm.2017.07.085. Epub 2017 Aug 1.

Abstract

Recent studies of signaling networks point out that an order of drugs to be administrated to the cancerous cells can be critical for optimal therapeutic outcomes of recalcitrant metastatic and drug-resistant cell types. In this study, a development of a polymeric nanoparticle system for sequential delivery is reported. The nanoparticle system can co-encapsulate and co-deliver a combination of therapeutic agents with different physicochemical properties [i.e. epidermal growth factor receptor (EGFR) inhibitor, erlotinib (Ei), and doxorubicin (Dox)]. Dox is hydrophilic and was complexed with anionic lipid, 1,2-dioleoyl-sn-glycero-3-phosphate (DOPA), via ion pairing to form a hydrophobic entity. Then it was co-encapsulated with hydrophobic Ei in a poly(L-lactide)-b-polyethylene glycol (PLA-b-PEG) nanoparticle by nanoprecipitation. The complexation of Dox with DOPA greatly helps the encapsulation of Dox, and substantially reduces the release rate of Dox. This nanoparticle system was found to burst the release of Ei with a slow and sustained profile of Dox, which is an optimal course of administration for these two drugs as previously reported. The efficacy of this sequential delivery nanoparticle system was validated in vitro and its in vivo potential applicability was substantiated by fluorescent imaging of high tumor accumulation.

摘要

近期对信号网络的研究指出,对癌细胞给药的顺序对于难治性转移性和耐药性细胞类型的最佳治疗效果可能至关重要。在本研究中,报道了一种用于顺序递送的聚合物纳米颗粒系统的开发。该纳米颗粒系统可以共包封并共同递送具有不同物理化学性质的治疗剂组合[即表皮生长因子受体(EGFR)抑制剂厄洛替尼(Ei)和多柔比星(Dox)]。Dox是亲水性的,并通过离子对与阴离子脂质1,2-二油酰基-sn-甘油-3-磷酸(DOPA)复合形成疏水性实体。然后通过纳米沉淀法将其与疏水性Ei共包封在聚(L-丙交酯)-b-聚乙二醇(PLA-b-PEG)纳米颗粒中。Dox与DOPA的复合极大地有助于Dox的包封,并显著降低Dox的释放速率。发现该纳米颗粒系统以缓慢且持续的Dox释放曲线使Ei突发释放,这是先前报道的这两种药物的最佳给药过程。该顺序递送纳米颗粒系统的疗效在体外得到验证,其体内潜在适用性通过高肿瘤蓄积的荧光成像得到证实。

相似文献

1
Sequential delivery of erlotinib and doxorubicin for enhanced triple negative Breast cancer treatment using polymeric nanoparticle.
Int J Pharm. 2017 Sep 15;530(1-2):300-307. doi: 10.1016/j.ijpharm.2017.07.085. Epub 2017 Aug 1.
2
Delayed Sequential Co-Delivery of Gefitinib and Doxorubicin for Targeted Combination Chemotherapy.
Mol Pharm. 2017 Dec 4;14(12):4551-4559. doi: 10.1021/acs.molpharmaceut.7b00669. Epub 2017 Nov 7.
3
Co-delivery of erlotinib and doxorubicin by pH-sensitive charge conversion nanocarrier for synergistic therapy.
J Control Release. 2016 May 10;229:80-92. doi: 10.1016/j.jconrel.2016.03.001. Epub 2016 Mar 3.
4
Fabrication of doxorubicin nanoparticles by controlled antisolvent precipitation for enhanced intracellular delivery.
Colloids Surf B Biointerfaces. 2016 Mar 1;139:249-58. doi: 10.1016/j.colsurfb.2015.12.026. Epub 2015 Dec 18.
5
Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review.
Eur J Pharm Biopharm. 2013 Nov;85(3 Pt A):427-43. doi: 10.1016/j.ejpb.2013.07.002. Epub 2013 Jul 17.
6
Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy.
Acta Biomater. 2013 Dec;9(12):9330-42. doi: 10.1016/j.actbio.2013.08.015. Epub 2013 Aug 17.
7
Delivery of bortezomib with nanoparticles for basal-like triple-negative breast cancer therapy.
J Control Release. 2015 Jun 28;208:14-24. doi: 10.1016/j.jconrel.2014.12.043. Epub 2015 Jan 7.
8
Milk derived colloid as a novel drug delivery carrier for breast cancer.
Cancer Biol Ther. 2015;16(8):1184-93. doi: 10.1080/15384047.2015.1056416.

引用本文的文献

1
Phototherapy in cancer treatment: strategies and challenges.
Signal Transduct Target Ther. 2025 Apr 2;10(1):115. doi: 10.1038/s41392-025-02140-y.
2
Engineering of Amphiphilic Erlotinib Analogue as Novel Nanomedicine for Non-Small Cell Lung Cancer Therapy.
Int J Nanomedicine. 2023 Nov 7;18:6367-6377. doi: 10.2147/IJN.S432464. eCollection 2023.
4
Advancements in Polymeric Nanocarriers to Mediate Targeted Therapy against Triple-Negative Breast Cancer.
Pharmaceutics. 2022 Nov 10;14(11):2432. doi: 10.3390/pharmaceutics14112432.
5
Nanomaterial-Based Drug Delivery Systems: A New Weapon for Cancer Immunotherapy.
Int J Nanomedicine. 2022 Oct 3;17:4677-4696. doi: 10.2147/IJN.S376216. eCollection 2022.
6
Nanoparticles mediated tumor microenvironment modulation: current advances and applications.
J Nanobiotechnology. 2022 Jun 14;20(1):274. doi: 10.1186/s12951-022-01476-9.
7
Emergence of Nanotechnology as a Powerful Cavalry against Triple-Negative Breast Cancer (TNBC).
Pharmaceuticals (Basel). 2022 Apr 27;15(5):542. doi: 10.3390/ph15050542.
9
Chlorambucil-Iron Oxide Nanoparticles as a Drug Delivery System for Leukemia Cancer Cells.
Int J Nanomedicine. 2021 Sep 8;16:6205-6216. doi: 10.2147/IJN.S312752. eCollection 2021.
10
Hydrophobic ion pairing: encapsulating small molecules, peptides, and proteins into nanocarriers.
Nanoscale Adv. 2019 Oct 1;1(11):4207-4237. doi: 10.1039/c9na00308h.

本文引用的文献

1
Ultra-small lipid-polymer hybrid nanoparticles for tumor-penetrating drug delivery.
Nanoscale. 2016 Aug 14;8(30):14411-9. doi: 10.1039/c6nr04091h. Epub 2016 Jul 14.
2
A novel in situ hydrophobic ion paring (HIP) formulation strategy for clinical product selection of a nanoparticle drug delivery system.
J Control Release. 2016 May 10;229:106-119. doi: 10.1016/j.jconrel.2016.03.026. Epub 2016 Mar 18.
4
Co-delivery of erlotinib and doxorubicin by pH-sensitive charge conversion nanocarrier for synergistic therapy.
J Control Release. 2016 May 10;229:80-92. doi: 10.1016/j.jconrel.2016.03.001. Epub 2016 Mar 3.
5
Principles of nanoparticle design for overcoming biological barriers to drug delivery.
Nat Biotechnol. 2015 Sep;33(9):941-51. doi: 10.1038/nbt.3330.
7
Herceptin conjugated PLGA-PHis-PEG pH sensitive nanoparticles for targeted and controlled drug delivery.
Int J Pharm. 2015 Jun 20;487(1-2):81-90. doi: 10.1016/j.ijpharm.2015.03.081. Epub 2015 Apr 9.
8
Programmable nanomedicine: synergistic and sequential drug delivery systems.
Nanoscale. 2015 Feb 28;7(8):3381-91. doi: 10.1039/c4nr07677j.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验