文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用叶酸功能化的载有多西他赛-厄洛替尼的生物聚合物纳米颗粒经鼻腔给药进行癌症治疗:研发、优化、表征及生物分布分析

Harnessing Folate-Functionalized Nasal Delivery of Dox-Erlo-Loaded Biopolymeric Nanoparticles in Cancer Treatment: Development, Optimization, Characterization, and Biodistribution Analysis.

作者信息

Farheen Ms, Akhter Md Habban, Chitme Havagiray, Akhter Md Sayeed, Tabassum Fauzia, Jaremko Mariusz, Emwas Abdul-Hamid

机构信息

School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India.

Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.

出版信息

Pharmaceuticals (Basel). 2023 Jan 30;16(2):207. doi: 10.3390/ph16020207.


DOI:10.3390/ph16020207
PMID:37259356
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9959140/
Abstract

The aim of the present study is to develop Doxorubicin-Erlotinib nanoparticles (Dox-Erlo NPs) and folate-armored Dox-Erlo-NP conjugates for targeting glioma cancer. Glioma is one of the most common progressive cancerous growths originating from brain glial cells. However, the blood-brain barrier (BBB) is only semi-permeable and is highly selective as to which compounds are let through; designing compounds that overcome this constraint is therefore a major challenge in the development of pharmaceutical agents. We demonstrate that the NP conjugates studied in this paper may ameliorate the BBB penetration and enrich the drug concentration in the target bypassing the BBB. NPs were prepared using a biopolymer with a double-emulsion solvent evaporation technique and functionalized with folic acid for site-specific targeting. Dox-Erlo NPs and Dox-Erlo-NP conjugates were extensively characterized in vitro for various parameters. Dox-Erlo NPs and Dox-Erlo-NP conjugates incurred a z-average of 95.35 ± 10.25 nm and 110.12 ± 9.2 nm, respectively. The zeta potentials of the Dox-Erlo NPs and Dox-Erlo-NP conjugates were observed at -18.1 mV and -25.1 mV, respectively. A TEM image has shown that the NPs were well-dispersed, uniform, de-aggregated, and consistent. A hemolytic assay confirmed hemocompatibility with the developed formulation and that it can be safely administered. Dox-Erlo-NP conjugates significantly reduced the number of viable cells to 24.66 ± 2.08% and 32.33 ± 2.51% in U87 and C6 cells, respectively, and IC50 values of 3.064 µM and 3.350 µM in U87 and C6 cells were reported after 24 h, respectively. A biodistribution study revealed that a significant concentration of Dox and Erlo were estimated in the brain relative to drug suspension. Dox-Erlo-NP conjugates were also stable for three months. The findings suggest that the developed Dox-Erlo-NP conjugates may be a promising agent for administration in glioma therapy.

摘要

本研究的目的是开发用于靶向胶质瘤的阿霉素 - 厄洛替尼纳米颗粒(Dox - Erlo NPs)和叶酸修饰的Dox - Erlo - NP缀合物。胶质瘤是起源于脑胶质细胞的最常见的进行性癌性生长之一。然而,血脑屏障(BBB)只是半透性的,并且对哪些化合物能通过具有高度选择性;因此,设计能够克服这一限制的化合物是药物开发中的一项重大挑战。我们证明,本文研究的NP缀合物可以改善血脑屏障的穿透性,并绕过血脑屏障在靶部位富集药物浓度。使用生物聚合物通过双乳液溶剂蒸发技术制备纳米颗粒,并用叶酸进行功能化以实现位点特异性靶向。对Dox - Erlo NPs和Dox - Erlo - NP缀合物的各种参数进行了广泛的体外表征。Dox - Erlo NPs和Dox - Erlo - NP缀合物的z平均直径分别为95.35±10.25 nm和110.12±9.2 nm。观察到Dox - Erlo NPs和Dox - Erlo - NP缀合物的zeta电位分别为 - 18.1 mV和 - 25.1 mV。透射电子显微镜(TEM)图像显示纳米颗粒分散良好、均匀、未聚集且形态一致。溶血试验证实了所开发制剂的血液相容性,并且可以安全给药。Dox - Erlo - NP缀合物在U87和C6细胞中分别将活细胞数量显著降低至24.66±2.08%和32.33±2.51%,并且在24小时后,U87和C6细胞中的IC50值分别报告为3.064 μM和3.350 μM。生物分布研究表明,相对于药物悬浮液,在脑中估计有显著浓度的阿霉素和厄洛替尼。Dox - Erlo - NP缀合物也稳定了三个月。研究结果表明,所开发的Dox - Erlo - NP缀合物可能是胶质瘤治疗中有前景的给药制剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79b3/9959140/e0010c48c916/pharmaceuticals-16-00207-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79b3/9959140/e06ef40e921c/pharmaceuticals-16-00207-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79b3/9959140/d0747b1838cd/pharmaceuticals-16-00207-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79b3/9959140/a4ed3f8765fb/pharmaceuticals-16-00207-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79b3/9959140/e104ec1f2762/pharmaceuticals-16-00207-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79b3/9959140/ee53d314b3fa/pharmaceuticals-16-00207-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79b3/9959140/3c34285ce216/pharmaceuticals-16-00207-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79b3/9959140/b841cfc4a095/pharmaceuticals-16-00207-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79b3/9959140/170ec394f9ed/pharmaceuticals-16-00207-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79b3/9959140/17b1616e8cc8/pharmaceuticals-16-00207-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79b3/9959140/486ac11b4661/pharmaceuticals-16-00207-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79b3/9959140/77c198bf3727/pharmaceuticals-16-00207-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79b3/9959140/b2602a6b28e3/pharmaceuticals-16-00207-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79b3/9959140/e0010c48c916/pharmaceuticals-16-00207-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79b3/9959140/e06ef40e921c/pharmaceuticals-16-00207-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79b3/9959140/d0747b1838cd/pharmaceuticals-16-00207-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79b3/9959140/a4ed3f8765fb/pharmaceuticals-16-00207-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79b3/9959140/e104ec1f2762/pharmaceuticals-16-00207-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79b3/9959140/ee53d314b3fa/pharmaceuticals-16-00207-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79b3/9959140/3c34285ce216/pharmaceuticals-16-00207-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79b3/9959140/b841cfc4a095/pharmaceuticals-16-00207-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79b3/9959140/170ec394f9ed/pharmaceuticals-16-00207-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79b3/9959140/17b1616e8cc8/pharmaceuticals-16-00207-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79b3/9959140/486ac11b4661/pharmaceuticals-16-00207-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79b3/9959140/77c198bf3727/pharmaceuticals-16-00207-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79b3/9959140/b2602a6b28e3/pharmaceuticals-16-00207-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79b3/9959140/e0010c48c916/pharmaceuticals-16-00207-g013.jpg

相似文献

[1]
Harnessing Folate-Functionalized Nasal Delivery of Dox-Erlo-Loaded Biopolymeric Nanoparticles in Cancer Treatment: Development, Optimization, Characterization, and Biodistribution Analysis.

Pharmaceuticals (Basel). 2023-1-30

[2]
Surface-Modified Biobased Polymeric Nanoparticles for Dual Delivery of Doxorubicin and Gefitinib in Glioma Cell Lines.

ACS Omega. 2023-7-26

[3]
Doxorubicin and indocyanine green loaded superparamagnetic iron oxide nanoparticles with PEGylated phospholipid coating for magnetic resonance with fluorescence imaging and chemotherapy of glioma.

Int J Nanomedicine. 2018-12-20

[4]
Co-delivery of doxorubicin and erlotinib through liposomal nanoparticles for glioblastoma tumor regression using an in vitro brain tumor model.

Colloids Surf B Biointerfaces. 2018-9-21

[5]
A novel doxorubicin loaded folic acid conjugated PAMAM modified with borneol, a nature dual-functional product of reducing PAMAM toxicity and boosting BBB penetration.

Eur J Pharm Sci. 2016-6-10

[6]
Folate-decorated poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) nanoparticles for targeting delivery: optimization and in vivo antitumor activity.

Drug Deliv. 2015-12-11

[7]
Fattigation-platform nanoparticles using apo-transferrin stearic acid as a core for receptor-oriented cancer targeting.

Colloids Surf B Biointerfaces. 2017-8-16

[8]
Lactoferrin-modified poly(ethylene glycol)-grafted BSA nanoparticles as a dual-targeting carrier for treating brain gliomas.

Mol Pharm. 2014-6-2

[9]
Transferrin-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment.

Biomaterials. 2013-8-6

[10]
Folate-mediated poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) nanoparticles for targeting drug delivery.

Eur J Pharm Biopharm. 2010-5-22

引用本文的文献

[1]
Overcoming the Blood-Brain Barrier for Drug Delivery to the Brain.

ACS Omega. 2025-7-22

[2]
Nanofibers in Glioma Therapy: Advances, Applications, and Overcoming Challenges.

Int J Nanomedicine. 2025-4-14

[3]
Enhancement of Cognitive Function by Andrographolide-Loaded Lactose β-Cyclodextrin Nanoparticles: Synthesis, Optimization, and Behavioural Assessment.

Pharmaceuticals (Basel). 2024-7-21

[4]
Co-Delivery of Naringin and Ciprofloxacin by Oleic Acid Lipid Core Encapsulated in Carboxymethyl Chitosan/Alginate Nanoparticle Composite for Enhanced Antimicrobial Activity.

ACS Omega. 2024-2-2

[5]
Drug repurposing: insights into the antimicrobial effects of AKBA against MRSA.

AMB Express. 2024-1-6

[6]
Design-of-Experiment-Assisted Fabrication of Biodegradable Polymeric Nanoparticles: In Vitro Characterization, Biological Activity, and In Vivo Assessment.

ACS Omega. 2023-10-11

[7]
Drug Delivery Application of Functional Nanomaterials Synthesized Using Natural Sources.

J Funct Biomater. 2023-8-15

[8]
Surface-Modified Biobased Polymeric Nanoparticles for Dual Delivery of Doxorubicin and Gefitinib in Glioma Cell Lines.

ACS Omega. 2023-7-26

本文引用的文献

[1]
Phytosterol-Loaded Surface-Tailored Bioactive-Polymer Nanoparticles for Cancer Treatment: Optimization, In Vitro Cell Viability, Antioxidant Activity, and Stability Studies.

Gels. 2022-4-2

[2]
Impact of Protein Corona on the Biological Identity of Nanomedicine: Understanding the Fate of Nanomaterials in the Biological Milieu.

Biomedicines. 2021-10-19

[3]
Doxorubicin-loaded nanoparticle coated with endothelial cells-derived exosomes for immunogenic chemotherapy of glioblastoma.

Bioeng Transl Med. 2020-12-3

[4]
Targeting Cancer Cells Overexpressing Folate Receptors with New Terpolymer-Based Nanocapsules: Toward a Novel Targeted DNA Delivery System for Cancer Therapy.

Biomedicines. 2021-9-21

[5]
Brain and other central nervous system tumor statistics, 2021.

CA Cancer J Clin. 2021-9

[6]
Plumbagin-Loaded Glycerosome Gel as Topical Delivery System for Skin Cancer Therapy.

Polymers (Basel). 2021-3-17

[7]
Advances in Research of Adult Gliomas.

Int J Mol Sci. 2021-1-18

[8]
SPION and doxorubicin-loaded polymeric nanocarriers for glioblastoma theranostics.

Drug Deliv Transl Res. 2021-4

[9]
Molecular Targets and Nanoparticulate Systems Designed for the Improved Therapeutic Intervention in Glioblastoma Multiforme.

Drug Res (Stuttg). 2021-3

[10]
Receptor-based targeting of engineered nanocarrier against solid tumors: Recent progress and challenges ahead.

Biochim Biophys Acta Gen Subj. 2021-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索