Suppr超能文献

食品中非生物环境胁迫诱导产志贺毒素原噬菌体

Induction of Shiga Toxin-Encoding Prophage by Abiotic Environmental Stress in Food.

作者信息

Fang Yuan, Mercer Ryan G, McMullen Lynn M, Gänzle Michael G

机构信息

University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, AB, Canada.

University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, AB, Canada

出版信息

Appl Environ Microbiol. 2017 Sep 15;83(19). doi: 10.1128/AEM.01378-17. Print 2017 Oct 1.

Abstract

The prophage-encoded Shiga toxin is a major virulence factor in Stx-producing (STEC). Toxin production and phage production are linked and occur after induction of the RecA-dependent SOS response. However, food-related stress and Stx-prophage induction have not been studied at the single-cell level. This study investigated the effects of abiotic environmental stress on expression by single-cell quantification of gene expression in STEC O104:H4 Δ:::: In addition, the effect of stress on production of phage particles was determined. The lethality of stressors, including heat, HCl, lactic acid, hydrogen peroxide, and high hydrostatic pressure, was selected to reduce cell counts by 1 to 2 log CFU/ml. The integrity of the bacterial membrane after exposure to stress was measured by propidium iodide (PI). The fluorescent signals of green fluorescent protein (GFP) and PI were quantified by flow cytometry. The mechanism of prophage induction by stress was evaluated by relative gene expression of and cell morphology. Acid (pH < 3.5) and HO (2.5 mM) induced the expression of in about 18% and 3% of the population, respectively. The mechanism of prophage induction by acid differs from that of induction by HO HO induction but not acid induction corresponded to production of infectious phage particles, upregulation of , and cell filamentation. Pressure (200 MPa) or heat did not induce the Stx2-encoding prophage (Stx2-prophage). Overall, the quantification method developed in this study allowed investigation of prophage induction and physiological properties at the single-cell level. HO and acids mediate different pathways to induce Stx2-prophage. Induction of the Stx-prophage in STEC results in production of phage particles and Stx and thus relates to virulence as well as the transduction of virulence genes. This study developed a method for a detection of the induction of Stx-prophages at the single-cell level; membrane permeability and an indication of SOS response to environmental stress were additionally assessed. HO and mitomycin C induced expression of the prophage and activated a SOS response. In contrast, HCl and lactic acid induced the Stx-prophage but not the SOS response. The lifestyle of STEC exposes the organism to intestinal and extraintestinal environments that impose oxidative and acid stress. A more thorough understanding of the influence of food processing-related stressors on Stx-prophage expression thus facilitates control of STEC in food systems by minimizing prophage induction during food production and storage.

摘要

原噬菌体编码的志贺毒素是产志贺毒素大肠杆菌(STEC)的主要毒力因子。毒素产生与噬菌体产生相关联,且在依赖RecA的SOS应答诱导后发生。然而,与食品相关的应激和Stx原噬菌体诱导尚未在单细胞水平上进行研究。本研究通过对STEC O104:H4 Δ::::基因表达进行单细胞定量,研究了非生物环境应激对其表达的影响。此外,还确定了应激对噬菌体颗粒产生的影响。选择热、盐酸、乳酸、过氧化氢和高静水压等应激源的致死率,使细胞计数降低1至2 log CFU/ml。用碘化丙啶(PI)测量应激后细菌膜的完整性。通过流式细胞术对绿色荧光蛋白(GFP)和PI的荧光信号进行定量。通过 和细胞形态的相对基因表达评估应激诱导原噬菌体的机制。酸(pH < 3.5)和H₂O₂(2.5 mM)分别在约18%和3%的群体中诱导 表达。酸诱导原噬菌体的机制与H₂O₂诱导的不同。H₂O₂诱导而非酸诱导对应于感染性噬菌体颗粒的产生、 的上调和细胞丝化。压力(200 MPa)或热未诱导编码Stx2的原噬菌体(Stx2 - 原噬菌体)。总体而言,本研究开发的定量方法允许在单细胞水平上研究原噬菌体诱导和生理特性。H₂O₂和酸介导不同途径诱导Stx2 - 原噬菌体。STEC中原噬菌体的诱导导致噬菌体颗粒和Stx的产生,因此与毒力以及毒力基因的转导有关。本研究开发了一种在单细胞水平检测Stx原噬菌体诱导的方法;还额外评估了膜通透性和对环境应激的SOS应答指示。H₂O₂和丝裂霉素C诱导原噬菌体表达并激活SOS应答。相反,盐酸和乳酸诱导Stx原噬菌体但不诱导SOS应答。STEC的生活方式使该生物体暴露于施加氧化应激和酸应激的肠道和肠外环境。因此,更深入了解食品加工相关应激源对Stx原噬菌体表达的影响,有助于通过在食品生产和储存过程中最小化原噬菌体诱导来控制食品系统中的STEC。

相似文献

1
Induction of Shiga Toxin-Encoding Prophage by Abiotic Environmental Stress in Food.
Appl Environ Microbiol. 2017 Sep 15;83(19). doi: 10.1128/AEM.01378-17. Print 2017 Oct 1.
2
Differential induction of Shiga toxin in environmental Escherichia coli O145:H28 strains carrying the same genotype as the outbreak strains.
Int J Food Microbiol. 2021 Feb 2;339:109029. doi: 10.1016/j.ijfoodmicro.2020.109029. Epub 2020 Dec 23.
4
Cinnamon Oil Inhibits Shiga Toxin Type 2 Phage Induction and Shiga Toxin Type 2 Production in Escherichia coli O157:H7.
Appl Environ Microbiol. 2016 Oct 27;82(22):6531-6540. doi: 10.1128/AEM.01702-16. Print 2016 Nov 15.
6
Characterizing RecA-independent induction of Shiga toxin2-encoding phages by EDTA treatment.
PLoS One. 2012;7(2):e32393. doi: 10.1371/journal.pone.0032393. Epub 2012 Feb 29.
7
Salt at concentrations relevant to meat processing enhances Shiga toxin 2 production in Escherichia coli O157:H7.
Int J Food Microbiol. 2012 Oct 15;159(3):186-92. doi: 10.1016/j.ijfoodmicro.2012.09.007. Epub 2012 Sep 19.
10
Induction of Shiga toxin-converting prophage in Escherichia coli by high hydrostatic pressure.
Appl Environ Microbiol. 2005 Mar;71(3):1155-62. doi: 10.1128/AEM.71.3.1155-1162.2005.

引用本文的文献

2
Pathogenic Factors and Recent Study on the Rapid Detection of Shiga Toxin-Producing Escherichia coli (STEC).
Mol Biotechnol. 2025 Jan;67(1):16-26. doi: 10.1007/s12033-023-00985-8. Epub 2023 Dec 28.
3
Influence of temperature and pH on induction of Shiga toxin in .
Front Microbiol. 2023 Jul 6;14:1181027. doi: 10.3389/fmicb.2023.1181027. eCollection 2023.
4
Disarm The Bacteria: What Temperate Phages Can Do.
Curr Issues Mol Biol. 2023 Feb 1;45(2):1149-1167. doi: 10.3390/cimb45020076.
6
Prophage Diversity Across and Verotoxin-Producing in Agricultural Niches of British Columbia, Canada.
Front Microbiol. 2022 Jul 22;13:853703. doi: 10.3389/fmicb.2022.853703. eCollection 2022.
7
The efficacy and safety of high-pressure processing of food.
EFSA J. 2022 Mar 8;20(3):e07128. doi: 10.2903/j.efsa.2022.7128. eCollection 2022 Mar.
8
Prophage Activation in the Intestine: Insights Into Functions and Possible Applications.
Front Microbiol. 2021 Dec 13;12:785634. doi: 10.3389/fmicb.2021.785634. eCollection 2021.
10
Phage-Mediated Explosive Cell Lysis Induces the Formation of a Different Type of O-IMV in M7.
Front Microbiol. 2021 Oct 8;12:713669. doi: 10.3389/fmicb.2021.713669. eCollection 2021.

本文引用的文献

3
Hybrid Shiga Toxin-Producing and Enterotoxigenic Escherichia sp. Cryptic Lineage 1 Strain 7v Harbors a Hybrid Plasmid.
Appl Environ Microbiol. 2016 Jun 30;82(14):4309-4319. doi: 10.1128/AEM.01129-16. Print 2016 Jul 15.
4
Influence of cyclopropane fatty acids on heat, high pressure, acid and oxidative resistance in Escherichia coli.
Int J Food Microbiol. 2016 Apr 2;222:16-22. doi: 10.1016/j.ijfoodmicro.2016.01.017. Epub 2016 Jan 26.
5
Commensal E. coli Stx2 lysogens produce high levels of phages after spontaneous prophage induction.
Front Cell Infect Microbiol. 2015 Feb 3;5:5. doi: 10.3389/fcimb.2015.00005. eCollection 2015.
6
Variation in heat and pressure resistance of verotoxigenic and nontoxigenic Escherichia coli.
J Food Prot. 2015 Jan;78(1):111-20. doi: 10.4315/0362-028X.JFP-14-267.
7
Microbiological effects of sublethal levels of antibiotics.
Nat Rev Microbiol. 2014 Jul;12(7):465-78. doi: 10.1038/nrmicro3270. Epub 2014 May 27.
8
The Trojan Horse of the microbiological arms race: phage-encoded toxins as a defence against eukaryotic predators.
Environ Microbiol. 2014 Feb;16(2):454-66. doi: 10.1111/1462-2920.12232. Epub 2013 Aug 28.
9
Altruism of Shiga toxin-producing Escherichia coli: recent hypothesis versus experimental results.
Front Cell Infect Microbiol. 2013 Jan 4;2:166. doi: 10.3389/fcimb.2012.00166. eCollection 2012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验