Suppr超能文献

通过纳米球光刻法制备抛物线型硅纳米结构及其在太阳能电池中的应用。

Fabrication of parabolic Si nanostructures by nanosphere lithography and its application for solar cells.

机构信息

Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.

Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea.

出版信息

Sci Rep. 2017 Aug 4;7(1):7336. doi: 10.1038/s41598-017-07463-7.

Abstract

We demonstrated fabrication of a parabola shaped Si nanostructures of various periods by combined approach of nanosphere lithography and a single step CF/O reactive ion etch (RIE) process. Silica nanosphere monolayers in a hexagonal array were well deposited by a solvent controlled spin coating technique based on binary organic solvents. We showed numerically that a parabolic Si nanostructure of an optimal period among various-shaped nanostructures overcoated with a dielectric layer of a 70 nm thickness provide the most effective antireflection. As the simulation results as a design guide, we fabricated the parabolic Si nanostructures of a 520 nm period and a 300 nm height exhibiting the lowest weighted reflectance of 2.75%. With incorporation of such parabolic Si nanostructures, a damage removal process for 20 sec and SiN antireflection coating of a 70 nm thickness, the efficiency of solar cells increased to 17.2% while that of the planar cells without the nanostructures exhibited 16.2%. The efficiency enhancement of the cell with the Si nanostructures was attributed to the improved photocurrents arising from the broad spectral antireflection which was confirmed by the external quantum efficiency (EQE) measurements.

摘要

我们通过纳米球光刻和一步 CF/O 反应离子刻蚀(RIE)工艺的组合方法,展示了各种周期抛物线形状 Si 纳米结构的制造。基于二元有机溶剂的溶剂控制旋涂技术,可以很好地沉积具有六方排列的单分子层二氧化硅纳米球。我们通过数值模拟表明,在覆盖有 70nm 厚介电层的各种形状纳米结构中,最佳周期的抛物线 Si 纳米结构提供最有效的抗反射。作为设计指导的模拟结果,我们制造了具有 520nm 周期和 300nm 高度的抛物线 Si 纳米结构,其加权反射率最低为 2.75%。通过采用这种抛物线 Si 纳米结构,以及 20 秒的损伤去除工艺和 70nm 厚的 SiN 抗反射涂层,太阳能电池的效率提高到 17.2%,而没有纳米结构的平面电池的效率为 16.2%。具有 Si 纳米结构的电池的效率提高归因于宽光谱抗反射引起的光电流增加,这通过外部量子效率(EQE)测量得到了证实。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9090/5544770/1e240da1f1d9/41598_2017_7463_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验