Kim Sangho, Jeong Gwan Seung, Park Na Yeon, Choi Jea-Young
Department of Materials Science & Engineering, Dong-A University, Busan 604-714, Korea.
Department of Metallurgical Engineering, Dong-A University, Busan 604-714, Korea.
Micromachines (Basel). 2021 Jan 23;12(2):119. doi: 10.3390/mi12020119.
In this report, we present a process for the fabrication and tapering of a silicon (Si) nanopillar (NP) array on a large Si surface area wafer (2-inch diameter) to provide enhanced light harvesting for Si solar cell application. From our ,-dimethyl-formamide (DMF) solvent-controlled spin-coating method, silica nanosphere (SNS in 310 nm diameter) coating on the Si surface was demonstrated successfully with improved monolayer coverage (>95%) and uniformity. After combining this method with a reactive ion etching (RIE) technique, a high-density Si NP array was produced, and we revealed that controlled tapering of Si NPs could be achieved after introducing a two-step RIE process using (1) CHF/Ar gases for SNS selective etching over Si and (2) Cl gas for Si vertical etching. From our experimental and computational study, we show that an effectively tapered Si NP (i.e., an Si nanotip (NT)) structure could offer a highly effective omnidirectional and broadband antireflection effect for high-efficiency Si solar cell application.
在本报告中,我们展示了一种在大尺寸硅(Si)表面积晶圆(直径2英寸)上制造和渐缩硅纳米柱(NP)阵列的工艺,以增强用于硅太阳能电池应用的光捕获。通过我们的N,N-二甲基甲酰胺(DMF)溶剂控制旋涂法,成功地在硅表面实现了二氧化硅纳米球(直径310nm的SNS)涂层,具有改善的单层覆盖率(>95%)和均匀性。将该方法与反应离子蚀刻(RIE)技术相结合后,制备出了高密度硅NP阵列,并且我们发现,在引入两步RIE工艺后,可以实现硅NP的可控渐缩,该工艺使用(1)CHF₃/Ar气体对硅进行SNS选择性蚀刻,以及(2)Cl₂气体进行硅的垂直蚀刻。通过我们的实验和计算研究,我们表明,有效渐缩的硅NP(即硅纳米尖(NT))结构可为高效硅太阳能电池应用提供高度有效的全向和宽带抗反射效果。