Suppr超能文献

人α- dystroglycan的结构灵活性

Structural flexibility of human α-dystroglycan.

作者信息

Covaceuszach Sonia, Bozzi Manuela, Bigotti Maria Giulia, Sciandra Francesca, Konarev Petr Valeryevich, Brancaccio Andrea, Cassetta Alberto

机构信息

Istituto di Cristallografia CNR, Trieste Outstation Italy.

Istituto di Biochimica e Biochimica Clinica Università Cattolica del Sacro Cuore Roma Italy.

出版信息

FEBS Open Bio. 2017 Jul 17;7(8):1064-1077. doi: 10.1002/2211-5463.12259. eCollection 2017 Aug.

Abstract

Dystroglycan (DG), composed of α and β subunits, belongs to the dystrophin-associated glycoprotein complex. α-DG is an extracellular matrix protein that undergoes a complex post-translational glycosylation process. The bifunctional glycosyltransferase like-acetylglucosaminyltransferase (LARGE) plays a crucial role in the maturation of α-DG, enabling its binding to laminin. We have already structurally analyzed the N-terminal region of murine α-DG (α-DG-Nt) and of a pathological single point mutant that may affect recognition of LARGE, although the structural features of the potential interaction between LARGE and DG remain elusive. We now report on the crystal structure of the wild-type human α-DG-Nt that has allowed us to assess the reliability of our murine crystallographic structure as a α-DG-Nt general model. Moreover, we address for the first time both structures in solution. Interestingly, small-angle X-ray scattering (SAXS) reveals the existence of two main protein conformations ensembles. The predominant species is reminiscent of the crystal structure, while the less populated one assumes a more extended fold. A comparative analysis of the human and murine α-DG-Nt solution structures reveals that the two proteins share a common interdomain flexibility and population distribution of the two conformers. This is confirmed by the very similar stability displayed by the two orthologs as assessed by biochemical and biophysical experiments. These results highlight the need to take into account the molecular plasticity of α-DG-Nt in solution, as it can play an important role in the functional interactions with other binding partners.

摘要

肌营养不良聚糖(DG)由α和β亚基组成,属于肌营养不良蛋白相关糖蛋白复合体。α-DG是一种细胞外基质蛋白,经历复杂的翻译后糖基化过程。双功能糖基转移酶样N-乙酰葡糖胺基转移酶(LARGE)在α-DG的成熟过程中起关键作用,使其能够与层粘连蛋白结合。我们已经对小鼠α-DG的N端区域(α-DG-Nt)以及可能影响LARGE识别的病理性单点突变体进行了结构分析,尽管LARGE与DG之间潜在相互作用的结构特征仍不清楚。我们现在报告野生型人α-DG-Nt的晶体结构,这使我们能够评估我们的小鼠晶体结构作为α-DG-Nt通用模型的可靠性。此外,我们首次研究了两种结构在溶液中的情况。有趣的是,小角X射线散射(SAXS)揭示了存在两种主要的蛋白质构象集合。主要的构象类似于晶体结构,而较少出现的构象则呈现出更伸展的折叠。对人和小鼠α-DG-Nt溶液结构的比较分析表明,这两种蛋白质具有共同的结构域间灵活性和两种构象的群体分布。通过生化和生物物理实验评估,两种直系同源物表现出非常相似的稳定性,这证实了上述结论。这些结果强调了在溶液中考虑α-DG-Nt分子可塑性的必要性,因为它在与其他结合伴侣的功能相互作用中可能起重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73d5/5537065/9447305076f5/FEB4-7-1064-g001.jpg

相似文献

1
Structural flexibility of human α-dystroglycan.
FEBS Open Bio. 2017 Jul 17;7(8):1064-1077. doi: 10.1002/2211-5463.12259. eCollection 2017 Aug.
2
The effect of the pathological V72I, D109N and T190M missense mutations on the molecular structure of α-dystroglycan.
PLoS One. 2017 Oct 16;12(10):e0186110. doi: 10.1371/journal.pone.0186110. eCollection 2017.
3
Hypoglycosylation of dystroglycan due to T192M mutation: a molecular insight behind the fact.
Gene. 2014 Mar 1;537(1):108-14. doi: 10.1016/j.gene.2013.11.071. Epub 2013 Dec 18.
4
A second Ig-like domain identified in dystroglycan by molecular modelling and dynamics.
J Mol Graph Model. 2011 Aug;29(8):1015-24. doi: 10.1016/j.jmgm.2011.04.008. Epub 2011 May 5.
5
α-Dystroglycan hypoglycosylation affects cell migration by influencing β-dystroglycan membrane clustering and filopodia length: A multiscale confocal microscopy analysis.
Biochim Biophys Acta Mol Basis Dis. 2017 Sep;1863(9):2182-2191. doi: 10.1016/j.bbadis.2017.05.025. Epub 2017 May 29.
6
Mutagenesis at the alpha-beta interface impairs the cleavage of the dystroglycan precursor.
FEBS J. 2009 Sep;276(17):4933-45. doi: 10.1111/j.1742-4658.2009.07196.x. Epub 2009 Aug 4.

引用本文的文献

1
Live cell optical super-resolution microscopy of dystroglycan mutants as a model for dystroglycanopathies in multiple cell lines.
Front Mol Biosci. 2025 Apr 3;12:1558170. doi: 10.3389/fmolb.2025.1558170. eCollection 2025.
2
Droplet Microarray Based Screening Identifies Proteins for Maintaining Pluripotency of hiPSCs.
Adv Healthc Mater. 2022 Sep;11(18):e2200718. doi: 10.1002/adhm.202200718. Epub 2022 Jul 20.
3
Lassa virus glycoprotein complex review: insights into its unique fusion machinery.
Biosci Rep. 2022 Feb 25;42(2). doi: 10.1042/BSR20211930.
6
Identification and Modeling of a GT-A Fold in the α-Dystroglycan Glycosylating Enzyme LARGE1.
J Chem Inf Model. 2020 Jun 22;60(6):3145-3156. doi: 10.1021/acs.jcim.0c00281. Epub 2020 May 14.
7
A molecular overview of the primary dystroglycanopathies.
J Cell Mol Med. 2019 May;23(5):3058-3062. doi: 10.1111/jcmm.14218. Epub 2019 Mar 5.
8
Neurexins - versatile molecular platforms in the synaptic cleft.
Curr Opin Struct Biol. 2019 Feb;54:112-121. doi: 10.1016/j.sbi.2019.01.009. Epub 2019 Mar 2.
9
Exploring digenic inheritance in arrhythmogenic cardiomyopathy.
BMC Med Genet. 2017 Dec 8;18(1):145. doi: 10.1186/s12881-017-0503-7.
10
The effect of the pathological V72I, D109N and T190M missense mutations on the molecular structure of α-dystroglycan.
PLoS One. 2017 Oct 16;12(10):e0186110. doi: 10.1371/journal.pone.0186110. eCollection 2017.

本文引用的文献

1
N-terminal α Dystroglycan (αDG-N): A Potential Serum Biomarker for Duchenne Muscular Dystrophy.
J Neuromuscul Dis. 2016 May 27;3(2):247-260. doi: 10.3233/JND-150127.
2
, a program for rapid shape determination in small-angle scattering.
J Appl Crystallogr. 2009 Apr 1;42(Pt 2):342-346. doi: 10.1107/S0021889809000338. Epub 2009 Jan 24.
3
Structural basis of laminin binding to the LARGE glycans on dystroglycan.
Nat Chem Biol. 2016 Oct;12(10):810-4. doi: 10.1038/nchembio.2146. Epub 2016 Aug 15.
4
A High-Throughput Assay for the Detection of α-Dystroglycan N-Terminus in Human Uterine Fluid to Determine Uterine Receptivity.
J Biomol Screen. 2016 Apr;21(4):408-13. doi: 10.1177/1087057115619127. Epub 2015 Dec 2.
5
The evolution of the dystroglycan complex, a major mediator of muscle integrity.
Biol Open. 2015 Aug 28;4(9):1163-79. doi: 10.1242/bio.012468.
8
Matriglycan: a novel polysaccharide that links dystroglycan to the basement membrane.
Glycobiology. 2015 Jul;25(7):702-13. doi: 10.1093/glycob/cwv021. Epub 2015 Apr 16.
9
Versatile sample environments and automation for biological solution X-ray scattering experiments at the P12 beamline (PETRA III, DESY).
J Appl Crystallogr. 2015 Mar 12;48(Pt 2):431-443. doi: 10.1107/S160057671500254X. eCollection 2015 Apr 1.
10
DAG1 mutations associated with asymptomatic hyperCKemia and hypoglycosylation of α-dystroglycan.
Neurology. 2015 Jan 20;84(3):273-9. doi: 10.1212/WNL.0000000000001162. Epub 2014 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验