Suppr超能文献

神经连接蛋白 - 突触间隙中的多功能分子平台。

Neurexins - versatile molecular platforms in the synaptic cleft.

机构信息

Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA.

出版信息

Curr Opin Struct Biol. 2019 Feb;54:112-121. doi: 10.1016/j.sbi.2019.01.009. Epub 2019 Mar 2.

Abstract

Neurexins constitute a large family of synaptic organizers. Their extracellular domains protrude into the synaptic cleft where they can form transsynaptic bridges with different partners. A unique constellation of structural elements within their ectodomains enables neurexins to create molecular platforms within the synaptic cleft that permit a large portfolio of partners to be recruited, assembled and their interactions to be dynamically regulated. Neurexins and their partners are implicated in neuropsychiatric diseases including autism spectrum disorder and schizophrenia. Detailed understanding of the mechanisms that underlie neurexin interactions may in future guide the design of tools to manipulate synaptic connections and their function, in particular those involved in the pathogenesis of neuropsychiatric disease.

摘要

神经连接蛋白构成了一个庞大的突触组织者家族。它们的细胞外结构域突出到突触间隙中,在那里可以与不同的伙伴形成跨突触桥。其细胞外结构域内独特的结构元素组合使神经连接蛋白能够在突触间隙内创建分子平台,从而允许大量的伙伴被招募、组装,并对它们的相互作用进行动态调节。神经连接蛋白及其伙伴与神经精神疾病有关,包括自闭症谱系障碍和精神分裂症。对神经连接蛋白相互作用的基础机制的深入了解,未来可能会指导设计用于操纵突触连接及其功能的工具,特别是那些与神经精神疾病发病机制相关的工具。

相似文献

1
Neurexins - versatile molecular platforms in the synaptic cleft.
Curr Opin Struct Biol. 2019 Feb;54:112-121. doi: 10.1016/j.sbi.2019.01.009. Epub 2019 Mar 2.
2
Calsyntenin-3 molecular architecture and interaction with neurexin 1α.
J Biol Chem. 2014 Dec 12;289(50):34530-42. doi: 10.1074/jbc.M114.606806. Epub 2014 Oct 28.
3
Endogenous β-neurexins on axons and within synapses show regulated dynamic behavior.
Cell Rep. 2021 Jun 15;35(11):109266. doi: 10.1016/j.celrep.2021.109266.
4
Emerging evidence implicating a role for neurexins in neurodegenerative and neuropsychiatric disorders.
Open Biol. 2021 Oct;11(10):210091. doi: 10.1098/rsob.210091. Epub 2021 Oct 6.
5
Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity.
Neural Plast. 2017;2017:6526151. doi: 10.1155/2017/6526151. Epub 2017 Jan 31.
7
The structure of neurexin 1α reveals features promoting a role as synaptic organizer.
Structure. 2011 Jun 8;19(6):779-89. doi: 10.1016/j.str.2011.03.012. Epub 2011 May 27.
8
Molecular Mechanism of MDGA1: Regulation of Neuroligin 2:Neurexin Trans-synaptic Bridges.
Neuron. 2017 Jun 21;94(6):1132-1141.e4. doi: 10.1016/j.neuron.2017.06.009.
10
β-Neurexins Control Neural Circuits by Regulating Synaptic Endocannabinoid Signaling.
Cell. 2015 Jul 30;162(3):593-606. doi: 10.1016/j.cell.2015.06.056. Epub 2015 Jul 23.

引用本文的文献

1
Crosstalk between copper, Alzheimer's disease, and melatonin.
Biometals. 2025 Jul 12. doi: 10.1007/s10534-025-00712-7.
7
Synaptic disruption and CREB-regulated transcription are restored by K channel blockers in ALS.
EMBO Mol Med. 2021 Jul 7;13(7):e13131. doi: 10.15252/emmm.202013131. Epub 2021 Jun 14.
8
The Nanoscopic Organization of Synapse Structures: A Common Basis for Cell Communication.
Membranes (Basel). 2021 Mar 30;11(4):248. doi: 10.3390/membranes11040248.
9
CA10 regulates neurexin heparan sulfate addition via a direct binding in the secretory pathway.
EMBO Rep. 2021 Apr 7;22(4):e51349. doi: 10.15252/embr.202051349. Epub 2021 Feb 15.
10
Interplay between hevin, SPARC, and MDGAs: Modulators of neurexin-neuroligin transsynaptic bridges.
Structure. 2021 Jul 1;29(7):664-678.e6. doi: 10.1016/j.str.2021.01.003. Epub 2021 Feb 2.

本文引用的文献

1
Teneurins and latrophilins: two giants meet at the synapse.
Curr Opin Struct Biol. 2019 Feb;54:141-151. doi: 10.1016/j.sbi.2019.01.028. Epub 2019 Apr 2.
2
Towards an Understanding of Synapse Formation.
Neuron. 2018 Oct 24;100(2):276-293. doi: 10.1016/j.neuron.2018.09.040.
3
Structural insights into modulation and selectivity of transsynaptic neurexin-LRRTM interaction.
Nat Commun. 2018 Sep 27;9(1):3964. doi: 10.1038/s41467-018-06333-8.
4
Structural Plasticity of Neurexin 1α: Implications for its Role as Synaptic Organizer.
J Mol Biol. 2018 Oct 19;430(21):4325-4343. doi: 10.1016/j.jmb.2018.08.026. Epub 2018 Sep 5.
5
Heparan Sulfate Organizes Neuronal Synapses through Neurexin Partnerships.
Cell. 2018 Sep 6;174(6):1450-1464.e23. doi: 10.1016/j.cell.2018.07.002. Epub 2018 Aug 9.
6
Synaptic Neurexin Complexes: A Molecular Code for the Logic of Neural Circuits.
Cell. 2017 Nov 2;171(4):745-769. doi: 10.1016/j.cell.2017.10.024.
7
Cbln1 and Cbln4 Are Structurally Similar but Differ in GluD2 Binding Interactions.
Cell Rep. 2017 Sep 5;20(10):2328-2340. doi: 10.1016/j.celrep.2017.08.031.
8
IgSF21 promotes differentiation of inhibitory synapses via binding to neurexin2α.
Nat Commun. 2017 Sep 1;8(1):408. doi: 10.1038/s41467-017-00333-w.
9
Structural Mechanism for Modulation of Synaptic Neuroligin-Neurexin Signaling by MDGA Proteins.
Neuron. 2017 Aug 16;95(4):896-913.e10. doi: 10.1016/j.neuron.2017.07.040.
10
Structural flexibility of human α-dystroglycan.
FEBS Open Bio. 2017 Jul 17;7(8):1064-1077. doi: 10.1002/2211-5463.12259. eCollection 2017 Aug.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验