Shettigar Nishan, Joshi Asawari, Dalmeida Rimple, Gopalkrishna Rohini, Chakravarthy Anirudh, Patnaik Siddharth, Mathew Manoj, Palakodeti Dasaradhi, Gulyani Akash
Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences, GKVK Post, Bangalore 560065, India.
Shanmugha Arts, Science, Technology and Research Academy (SASTRA) University, Tirumalaisamudram, Thanjavur 613401, India.
Sci Adv. 2017 Jul 28;3(7):e1603025. doi: 10.1126/sciadv.1603025. eCollection 2017 Jul.
Light sensing has independently evolved multiple times under diverse selective pressures but has been examined only in a handful among the millions of light-responsive organisms. Unsurprisingly, mechanistic insights into how differential light processing can cause distinct behavioral outputs are limited. We show how an organism can achieve complex light processing with a simple "eye" while also having independent but mutually interacting light sensing networks. Although planarian flatworms lack wavelength-specific eye photoreceptors, a 25 nm change in light wavelength is sufficient to completely switch their phototactic behavior. Quantitative photoassays, eye-brain confocal imaging, and RNA interference/knockdown studies reveal that flatworms are able to compare small differences in the amounts of light absorbed at the eyes through a single eye opsin and convert them into binary behavioral outputs. Because planarians can fully regenerate, eye-brain injury-regeneration studies showed that this acute light intensity sensing and processing are layered on simple light detection. Unlike intact worms, partially regenerated animals with eyes can sense light but cannot sense finer gradients. Planarians also show a "reflex-like," eye-independent (extraocular/whole-body) response to low ultraviolet A light, apart from the "processive" eye-brain-mediated (ocular) response. Competition experiments between ocular and extraocular sensory systems reveal dynamic interchanging hierarchies. In intact worms, cerebral ocular response can override the reflex-like extraocular response. However, injury-regeneration again offers a time window wherein both responses coexist, but the dominance of the ocular response is reversed. Overall, we demonstrate acute light intensity-based behavioral switching and two evolutionarily distinct but interacting light sensing networks in a regenerating organism.
在不同的选择压力下,光感应已经独立进化了多次,但仅在数百万种光反应生物中的少数几种中进行过研究。毫不奇怪,关于不同的光处理如何导致不同行为输出的机制性见解是有限的。我们展示了一种生物如何用一个简单的“眼睛”实现复杂的光处理,同时还拥有独立但相互作用的光感应网络。虽然涡虫没有波长特异性的眼感光器,但光波长25纳米的变化就足以完全改变它们的趋光行为。定量光测定、眼脑共聚焦成像以及RNA干扰/敲除研究表明,涡虫能够通过单一的眼视蛋白比较眼睛吸收的光量的微小差异,并将其转化为二元行为输出。由于涡虫能够完全再生,眼脑损伤再生研究表明,这种急性光强度感应和处理是叠加在简单的光检测之上的。与完整的蠕虫不同,部分再生有眼的动物能够感知光,但无法感知更细微的梯度。除了“渐进性的”眼脑介导(眼部)反应外,涡虫对低强度紫外线A还表现出一种“类似反射的”、不依赖眼睛(眼外/全身)的反应。眼和眼外感觉系统之间的竞争实验揭示了动态变化的层次结构。在完整的蠕虫中,脑部眼部反应可以覆盖类似反射的眼外反应。然而,损伤再生再次提供了一个时间窗口,在此期间两种反应共存,但眼部反应的主导地位发生了逆转。总体而言,我们在一种再生生物中展示了基于急性光强度的行为切换以及两个进化上不同但相互作用的光感应网络。