Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, White Oak Federal Research Center, Silver Spring, MD, USA.
Medical Device Innovation Consortium, Minneapolis, MN, USA.
Neuromodulation. 2018 Feb;21(2):117-125. doi: 10.1111/ner.12641. Epub 2017 Aug 7.
The Shannon model is often used to define an expected boundary between non-damaging and damaging modes of electrical neurostimulation. Numerous preclinical studies have been performed by manufacturers of neuromodulation devices using different animal models and a broad range of stimulation parameters while developing devices for clinical use. These studies are mostly absent from peer-reviewed literature, which may lead to this information being overlooked by the scientific community. We aimed to locate summaries of these studies accessible via public regulatory databases and to add them to a body of knowledge available to a broad scientific community.
We employed web search terms describing device type, intended use, neural target, therapeutic application, company name, and submission number to identify summaries for premarket approval (PMA) devices and 510(k) devices. We filtered these records to a subset of entries that have sufficient technical information relevant to safety of neurostimulation.
We identified 13 product codes for 8 types of neuromodulation devices. These led us to devices that have 22 PMAs and 154 510(k)s and six transcripts of public panel meetings. We found one PMA for a brain, peripheral nerve, and spinal cord stimulator and five 510(k) spinal cord stimulators with enough information to plot in Shannon coordinates of charge and charge density per phase.
Analysis of relevant entries from public regulatory databases reveals use of pig, sheep, monkey, dog, and goat animal models with deep brain, peripheral nerve, muscle and spinal cord electrode placement with a variety of stimulation durations (hours to years); frequencies (10-10,000 Hz) and magnitudes (Shannon k from below zero to 4.47). Data from located entries indicate that a feline cortical model that employs acute stimulation might have limitations for assessing tissue damage in diverse anatomical locations, particularly for peripheral nerve and spinal cord simulation.
香农模型常用于定义非损伤和损伤模式的电神经刺激之间的预期边界。众多神经调节设备制造商在开发用于临床应用的设备时,使用不同的动物模型和广泛的刺激参数进行了无数的临床前研究。这些研究大多没有出现在同行评议的文献中,这可能导致科学界忽略了这些信息。我们旨在通过公共监管数据库找到这些研究的摘要,并将其添加到广泛的科学界可获得的知识库中。
我们使用描述设备类型、预期用途、神经靶点、治疗应用、公司名称和提交编号的网络搜索词来识别预市场批准(PMA)设备和 510(k)设备的摘要。我们对这些记录进行了筛选,以确定与神经刺激安全性相关的技术信息足够的记录子集。
我们确定了 8 种神经调节设备的 13 个产品代码。这些代码引导我们找到了 22 个 PMA 和 154 个 510(k)以及 6 个公开小组会议记录。我们找到了一个用于脑、周围神经和脊髓刺激器的 PMA 和五个具有足够信息可在电荷和每相电荷密度的香农坐标中绘制的 510(k)脊髓刺激器。
对公共监管数据库中相关条目的分析揭示了使用猪、绵羊、猴子、狗和山羊动物模型进行深部脑、周围神经、肌肉和脊髓电极放置,并进行各种刺激持续时间(数小时到数年);频率(10-10,000 Hz)和幅度(从负到 4.47 的香农 k)。从定位条目的数据表明,采用急性刺激的猫皮质模型可能在评估不同解剖位置的组织损伤方面存在局限性,特别是对于周围神经和脊髓模拟。