Suppr超能文献

血管阻力在渐进性高碳酸血症引起的 BOLD 反应中的作用。

The role of vascular resistance in BOLD responses to progressive hypercapnia.

机构信息

Department of Physiology, University Health Network, Toronto, Canada.

Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, Canada.

出版信息

Hum Brain Mapp. 2017 Nov;38(11):5590-5602. doi: 10.1002/hbm.23751. Epub 2017 Aug 7.

Abstract

The ability of the cerebral vasculature to regulate vascular diameter, hence resistance and cerebral blood flow (CBF), in response to metabolic demands (neurovascular coupling), and perfusion pressure changes (autoregulation) may be assessed by measuring the CBF response to carbon dioxide (CO ). In healthy individuals, the CBF response to a ramp CO stimulus from hypocapnia to hypercapnia is assumed sigmoidal or linear. However, other response patterns commonly occur, especially in individuals with cerebrovascular disease, and these remain unexplained. CBF responses to CO in a vascular region are determined by the combined effects of the innate vascular responses to CO and the local perfusion pressure; the latter ensuing from pressure-flow interactions within the cerebral vascular network. We modeled this situation as two vascular beds perfused in parallel from a fixed resistance source. Our premise is that all vascular beds have a sigmoidal reduction of resistance in response to a progressive rise in CO . Surrogate CBF data to test the model was provided by magnetic resonance imaging of blood oxygen level-dependent (BOLD) signals. The model successfully generated all the various BOLD-CO response patterns, providing a physiological explanation of CBF distribution as relative differences in the network of vascular bed resistance responses to CO . Hum Brain Mapp 38:5590-5602, 2017. © 2017 Wiley Periodicals, Inc.

摘要

脑血管能够调节血管直径,从而响应代谢需求(神经血管耦合)和灌注压变化(自动调节)来调节脑血流量(CBF)。可以通过测量 CBF 对二氧化碳(CO )的反应来评估这种能力。在健康个体中,从低碳酸血症到高碳酸血症的 CO 斜坡刺激的 CBF 反应假定为呈 sigmoidal 或线性。然而,其他反应模式也很常见,尤其是在患有脑血管疾病的个体中,这些反应模式仍未得到解释。CO 在血管区域的 CBF 反应取决于对 CO 的固有血管反应和局部灌注压的综合影响;后者是由于脑血管网络内的压力-流量相互作用而产生的。我们将这种情况建模为两个血管床从固定阻力源并行灌注。我们的前提是,所有血管床都对 CO 的逐渐升高呈 sigmoidal 降低阻力。用于测试模型的替代 CBF 数据由血氧水平依赖(BOLD)信号的磁共振成像提供。该模型成功生成了所有各种 BOLD-CO 反应模式,为 CBF 分布提供了生理解释,即血管床对 CO 的阻力反应网络的相对差异。人脑映射 38:5590-5602, 2017。© 2017 威利父子公司

相似文献

3
Cerebrovascular Resistance: The Basis of Cerebrovascular Reactivity.脑血管阻力:脑血管反应性的基础。
Front Neurosci. 2018 Jun 19;12:409. doi: 10.3389/fnins.2018.00409. eCollection 2018.

引用本文的文献

8
Assessing Cerebrovascular Resistance in Patients With Sickle Cell Disease.评估镰状细胞病患者的脑血管阻力
Front Physiol. 2022 Mar 29;13:847969. doi: 10.3389/fphys.2022.847969. eCollection 2022.
10
Measuring Cerebrovascular Reactivity: Sixteen Avoidable Pitfalls.测量脑血管反应性:十六个可避免的陷阱。
Front Physiol. 2021 Jul 7;12:665049. doi: 10.3389/fphys.2021.665049. eCollection 2021.

本文引用的文献

4
9
10
Factors affecting the determination of cerebrovascular reactivity.影响脑血管反应性测定的因素。
Brain Behav. 2014 Sep;4(5):775-88. doi: 10.1002/brb3.275. Epub 2014 Aug 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验