Institute for Environmental Physics IUP-Center for Marine Environmental Sciences MARUM, Bremen University, Otto-Hahn-Allee 1, NW1, Bremen 28359, Germany
Institute for Environmental Physics IUP-Center for Marine Environmental Sciences MARUM, Bremen University, Otto-Hahn-Allee 1, NW1, Bremen 28359, Germany.
Philos Trans A Math Phys Eng Sci. 2017 Sep 13;375(2102). doi: 10.1098/rsta.2016.0321.
Ventilation of Labrador Sea Water (LSW) receives ample attention because of its potential relation to the strength of the Atlantic Meridional Overturning Circulation (AMOC). Here, we provide an overview of the changes of LSW from observations in the Labrador Sea and from the southern boundary of the subpolar gyre at 47° N. A strong winter-time atmospheric cooling over the Labrador Sea led to intense and deep convection, producing a thick and dense LSW layer as, for instance, in the early to mid-1990s. The weaker convection in the following years mostly ventilated less dense LSW vintages and also reduced the supply of oxygen. As a further consequence, the rate of uptake of anthropogenic carbon by LSW decreased between the two time periods 1996-1999 and 2007-2010 in the western subpolar North Atlantic. In the eastern basins, the rate of increase in anthropogenic carbon became greater due to the delayed advection of LSW that was ventilated in previous years. Starting in winter 2013/2014 and prevailing at least into winter 2015/2016, production of denser and more voluminous LSW resumed. Increasing oxygen signals have already been found in the western boundary current at 47° N. On decadal and shorter time scales, anomalous cold atmospheric conditions over the Labrador Sea lead to an intensification of convection. On multi-decadal time scales, the 'cold blob' in the subpolar North Atlantic projected by climate models in the next 100 years is linked to a weaker AMOC and weaker convection (and thus deoxygenation) in the Labrador Sea.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.
拉布拉多海(LSW)的通风受到了广泛关注,因为它可能与大西洋经向翻转环流(AMOC)的强度有关。在这里,我们提供了拉布拉多海观测和 47°N 副极地环流南部边界的 LSW 变化概述。拉布拉多海冬季大气强烈冷却导致强烈和深层对流,产生了厚厚的、密集的 LSW 层,例如在 20 世纪 90 年代初期到中期。随后几年的对流较弱,主要通风了密度较低的 LSW 年份,并减少了氧气供应。作为进一步的结果,在 1996-1999 年和 2007-2010 年两个时期之间,西副极地北大西洋 LSW 对人为碳的吸收速率降低。在东部盆地,由于前几年通风的 LSW 延迟平流,人为碳的增长率增加。从 2013/2014 年冬季开始,并至少持续到 2015/2016 年冬季,较密集和更大体积的 LSW 开始产生。在 47°N 的西部边界流中已经发现了氧气信号增加。在数十年和较短时间尺度上,拉布拉多海上异常寒冷的大气条件导致对流加剧。在数十年时间尺度上,气候模型预测的下一个 100 年北大西洋副极地地区的“冷斑”与较弱的 AMOC 和拉布拉多海较弱的对流(因此脱氧)有关。本文是“变暖世界中的海洋通风和脱氧”主题特刊的一部分。