Suppr超能文献

DNA 损伤绕过与转录偶联修复的随机动力学。

DNA lesion bypass and the stochastic dynamics of transcription-coupled repair.

机构信息

Cancer Research United Kingdom Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom.

Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2024 May 14;121(20):e2403871121. doi: 10.1073/pnas.2403871121. Epub 2024 May 8.

Abstract

DNA base damage is a major source of oncogenic mutations and disruption to gene expression. The stalling of RNA polymerase II (RNAP) at sites of DNA damage and the subsequent triggering of repair processes have major roles in shaping the genome-wide distribution of mutations, clearing barriers to transcription, and minimizing the production of miscoded gene products. Despite its importance for genetic integrity, key mechanistic features of this transcription-coupled repair (TCR) process are controversial or unknown. Here, we exploited a well-powered in vivo mammalian model system to explore the mechanistic properties and parameters of TCR for alkylation damage at fine spatial resolution and with discrimination of the damaged DNA strand. For rigorous interpretation, a generalizable mathematical model of DNA damage and TCR was developed. Fitting experimental data to the model and simulation revealed that RNA polymerases frequently bypass lesions without triggering repair, indicating that small alkylation adducts are unlikely to be an efficient barrier to gene expression. Following a burst of damage, the efficiency of transcription-coupled repair gradually decays through gene bodies with implications for the occurrence and accurate inference of driver mutations in cancer. The reinitation of transcription from the repair site is not a general feature of transcription-coupled repair, and the observed data is consistent with reinitiation never taking place. Collectively, these results reveal how the directional but stochastic activity of TCR shapes the distribution of mutations following DNA damage.

摘要

DNA 碱基损伤是致癌突变和基因表达中断的主要来源。RNA 聚合酶 II(RNAP)在 DNA 损伤部位的停滞以及随后触发的修复过程在塑造突变的全基因组分布、清除转录障碍和最小化错误编码基因产物的产生方面发挥着重要作用。尽管它对遗传完整性很重要,但这种转录偶联修复(TCR)过程的关键机制特征存在争议或未知。在这里,我们利用功能强大的体内哺乳动物模型系统,以精细的空间分辨率探索 TCR 在烷基化损伤方面的机制特性和参数,并区分受损 DNA 链。为了进行严格的解释,我们开发了一种可推广的 DNA 损伤和 TCR 的数学模型。将实验数据拟合到模型和模拟中表明,RNA 聚合酶经常在不触发修复的情况下绕过损伤,这表明小的烷基化加合物不太可能成为基因表达的有效障碍。在损伤爆发后,转录偶联修复的效率逐渐在基因体内衰减,这对癌症中驱动突变的发生和准确推断具有影响。修复部位的转录重新起始不是转录偶联修复的一般特征,观察到的数据与从未发生重新起始一致。总的来说,这些结果揭示了 TCR 的定向但随机活动如何在 DNA 损伤后塑造突变的分布。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3261/11098089/e03ed68f7d1f/pnas.2403871121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验