Suppr超能文献

基于微球的超分辨率扫描光学显微镜。

Microsphere-based super-resolution scanning optical microscope.

作者信息

Huszka Gergely, Yang Hui, Gijs Martin A M

出版信息

Opt Express. 2017 Jun 26;25(13):15079-15092. doi: 10.1364/OE.25.015079.

Abstract

High-refractive index dielectric microspheres positioned within the field of view of a microscope objective in a dielectric medium can focus the light into a so-called photonic nanojet. A sample placed in such nanojet can be imaged by the objective with super-resolution, i.e. with a resolution beyond the classical diffraction limit. However, when imaging nanostructures on a substrate, the propagation distance of a light wave in the dielectric medium in between the substrate and the microsphere must be small enough to reveal the sample's nanometric features. Therefore, only the central part of an image obtained through a microsphere shows super-resolution details, which are typically ∼100 nm using white light (peak at λ = 600 nm). We have performed finite element simulations of the role of this critical distance in the super-resolution effect. Super-resolution imaging of a sample placed beneath the microsphere is only possible within a very restricted central area of ∼10 μm, where the separation distance between the substrate and the microsphere surface is very small (∼1 μm). To generate super-resolution images over larger areas of the sample, we have fixed a microsphere on a frame attached to the microscope objective, which is automatically scanned over the sample in a step-by-step fashion. This generates a set of image tiles, which are subsequently stitched into a single super-resolution image (with resolution of λ/4-λ/5) of a sample area of up to ∼10 μm. Scanning a standard optical microscope objective with microsphere therefore enables super-resolution microscopy over the complete field-of-view of the objective.

摘要

位于介电介质中显微镜物镜视场内的高折射率介电微球可将光聚焦成所谓的光子纳米射流。置于这种纳米射流中的样品可被物镜以超分辨率成像,即分辨率超越经典衍射极限。然而,在对衬底上的纳米结构成像时,光波在衬底与微球之间的介电介质中的传播距离必须足够小,才能揭示样品的纳米级特征。因此,通过微球获得的图像只有中心部分显示超分辨率细节,使用白光(波长λ = 600 nm处的峰值)时,这些细节通常约为100 nm。我们对这个临界距离在超分辨率效应中的作用进行了有限元模拟。置于微球下方的样品的超分辨率成像仅在约10μm的非常有限的中心区域内才有可能,在该区域衬底与微球表面之间的分离距离非常小(约1μm)。为了在样品的更大区域上生成超分辨率图像,我们将一个微球固定在连接到显微镜物镜的框架上,该框架以逐步方式在样品上自动扫描。这会生成一组图像块,随后将它们拼接成一个高达约10μm的样品区域的单个超分辨率图像(分辨率为λ/4 - λ/5)。因此,用微球扫描标准光学显微镜物镜能够在物镜的整个视场内实现超分辨率显微镜成像。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验