Suppr超能文献

光子纳米射流

Photonic Nanojets.

作者信息

Heifetz Alexander, Kong Soon-Cheol, Sahakian Alan V, Taflove Allen, Backman Vadim

机构信息

Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208 USA.

出版信息

J Comput Theor Nanosci. 2009 Sep 1;6(9):1979-1992. doi: 10.1166/jctn.2009.1254.

Abstract

This paper reviews the substantial body of literature emerging since 2004 concerning photonic nanojets. The photonic nanojet is a narrow, high-intensity, non-evanescent light beam that can propagate over a distance longer than the wavelength λ after emerging from the shadow-side surface of an illuminated lossless dielectric microcylinder or microsphere of diameter larger than λ. The nanojet's minimum beamwidth can be smaller than the classical diffraction limit, in fact as small as ~λ/3 for microspheres. It is a nonresonant phenomenon appearing for a wide range of diameters of the microcylinder or microsphere if the refractive index contrast relative to the background is less than about 2:1. Importantly, inserting within a nanojet a nanoparticle of diameter d(ν) perturbs the far-field backscattered power of the illuminated microsphere by an amount that varies as d(ν)3 for a fixed λ. This perturbation is much slower than the d(ν)6 dependence of Rayleigh scattering for the same nanoparticle, if isolated. This leads to a situation where, for example, the measured far-field backscattered power of a 3-μm diameter microsphere could double if a 30-nm diameter nanoparticle were inserted into the nanojet emerging from the microsphere, despite the nanoparticle having only 1/10,000(th) the cross-section area of the microsphere. In effect, the nanojet serves to project the presence of the nanoparticle to the far field. These properties combine to afford potentially important applications of photonic nanojets for detecting and manipulating nanoscale objects, subdiffraction-resolution nanopatterning and nanolithography, low-loss waveguiding, and ultrahigh-density optical storage.

摘要

本文回顾了自2004年以来出现的关于光子纳米射流的大量文献。光子纳米射流是一种狭窄、高强度、非倏逝的光束,它从直径大于波长λ的被照亮的无损介质微圆柱体或微球体的阴影侧表面出射后,能够传播超过波长λ的距离。纳米射流的最小光束宽度可以小于经典衍射极限,对于微球体而言,实际上小至约λ/3。如果相对于背景的折射率对比度小于约2:1,那么对于微圆柱体或微球体的广泛直径范围都会出现这种非共振现象。重要的是,在纳米射流中插入直径为d(ν)的纳米颗粒,会使被照亮微球体的远场背向散射功率受到扰动,对于固定的波长λ,该扰动量随d(ν)³变化。如果该纳米颗粒是孤立的,这种扰动比相同纳米颗粒的瑞利散射的d(ν)⁶依赖性要慢得多。这就导致了这样一种情况,例如,如果将一个直径为30纳米的纳米颗粒插入从直径为3微米的微球体出射的纳米射流中,尽管该纳米颗粒的横截面积仅为微球体的1/10000,但所测量的该微球体的远场背向散射功率可能会加倍。实际上,纳米射流有助于将纳米颗粒的存在投射到远场。这些特性共同为光子纳米射流在检测和操纵纳米级物体、亚衍射分辨率纳米图案化和纳米光刻、低损耗波导以及超高密度光存储方面提供了潜在的重要应用。

相似文献

1
Photonic Nanojets.
J Comput Theor Nanosci. 2009 Sep 1;6(9):1979-1992. doi: 10.1166/jctn.2009.1254.
2
Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets.
Opt Express. 2005 Jan 24;13(2):526-33. doi: 10.1364/opex.13.000526.
4
Super-Resolution Imaging of a Dielectric Microsphere Is Governed by the Waist of Its Photonic Nanojet.
Nano Lett. 2016 Aug 10;16(8):4862-70. doi: 10.1021/acs.nanolett.6b01255. Epub 2016 Jul 19.
5
Side-lobes-controlled photonic nanojet with a horizontal graded-index microcylinder.
Opt Lett. 2018 Sep 1;43(17):4292-4295. doi: 10.1364/OL.43.004292.
6
Ultralong photonic nanojet formed by a two-layer dielectric microsphere.
Opt Lett. 2014 Jul 15;39(14):4120-3. doi: 10.1364/OL.39.004120.
7
Photonic nanojet array for fast detection of single nanoparticles in a flow.
Nano Lett. 2015 Mar 11;15(3):1730-5. doi: 10.1021/nl5044067. Epub 2015 Feb 18.
8
Twin photonic nanojets generated from coherent illumination of microscale sphere and cylinder.
Nanotechnology. 2018 Feb 16;29(7):075204. doi: 10.1088/1361-6528/aaa35d.
9
Direct imaging of photonic nanojets.
Opt Express. 2008 May 12;16(10):6930-40. doi: 10.1364/oe.16.006930.
10
Microsphere-based super-resolution scanning optical microscope.
Opt Express. 2017 Jun 26;25(13):15079-15092. doi: 10.1364/OE.25.015079.

引用本文的文献

1
Acoustofluidic scanning fluorescence nanoscopy with a large field of view.
Microsyst Nanoeng. 2024 May 10;10:59. doi: 10.1038/s41378-024-00683-8. eCollection 2024.
2
Light distribution in fat cell layers at physiological temperatures.
Sci Rep. 2023 Jan 19;13(1):1073. doi: 10.1038/s41598-022-25012-9.
3
All-dielectric concentration of electromagnetic fields at the nanoscale: the role of photonic nanojets.
Nanoscale Adv. 2019 Nov 11;1(12):4615-4643. doi: 10.1039/c9na00430k. eCollection 2019 Dec 3.
5
Diffraction limited photonic hook via scattering and diffraction of dual-dielectric structures.
Sci Rep. 2021 Oct 13;11(1):20278. doi: 10.1038/s41598-021-99744-5.
6
Temperature Effects on Optical Trapping Stability.
Micromachines (Basel). 2021 Aug 12;12(8):954. doi: 10.3390/mi12080954.
7
Colloidal Lithography for Photovoltaics: An Attractive Route for Light Management.
Nanomaterials (Basel). 2021 Jun 24;11(7):1665. doi: 10.3390/nano11071665.
10
Cellular lensing and near infrared fluorescent nanosensor arrays to enable chemical efflux cytometry.
Nat Commun. 2021 May 25;12(1):3079. doi: 10.1038/s41467-021-23416-1.

本文引用的文献

1
Nanojets and directional emission in symmetric photonic molecules.
Opt Express. 2007 Dec 10;15(25):17343-50. doi: 10.1364/oe.15.017343.
4
Rigorous 3D calculation of effects of pit structure in TwoDOS systems.
Opt Express. 2007 Mar 5;15(5):2075-97. doi: 10.1364/oe.15.002075.
5
Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets.
Opt Express. 2005 Jan 24;13(2):526-33. doi: 10.1364/opex.13.000526.
7
Spectral analysis of three-dimensional photonic jets.
Opt Express. 2008 Sep 1;16(18):14200-12. doi: 10.1364/oe.16.014200.
8
Photonic nanojet-enabled optical data storage.
Opt Express. 2008 Sep 1;16(18):13713-9. doi: 10.1364/oe.16.013713.
9
Optical forces on metallic nanoparticles induced by a photonic nanojet.
Opt Express. 2008 Sep 1;16(18):13560-8. doi: 10.1364/oe.16.013560.
10
Subwavelength direct-write nanopatterning using optically trapped microspheres.
Nat Nanotechnol. 2008 Jul;3(7):413-7. doi: 10.1038/nnano.2008.150. Epub 2008 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验