Suppr超能文献

评估奥司他韦诱导的耐药风险及其对流感感染控制策略的影响。

Assessing the oseltamivir-induced resistance risk and implications for influenza infection control strategies.

作者信息

Hsieh Nan-Hung, Lin Yi-Jun, Yang Ying-Fei, Liao Chung-Min

机构信息

Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA.

Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan.

出版信息

Infect Drug Resist. 2017 Jul 20;10:215-226. doi: 10.2147/IDR.S138317. eCollection 2017.

Abstract

BACKGROUND

Oseltamivir-resistant mutants with higher drug resistance rates and low trans-mission fitness costs have not accounted for influenza (sub)type viruses. Predicting the impacts of neuraminidase inhibitor therapy on infection rates and transmission of drug-resistant viral strains requires further investigation.

OBJECTIVES

The purpose of this study was to assess the potential risk of oseltamivir-induced resistance for influenza A (H1N1) and A (H3N2) viruses.

MATERIALS AND METHODS

An immune-response-based virus dynamic model was used to best fit the oseltamivir-resistant A (H1N1) and A (H3N2) infection data. A probabilistic risk assessment model was developed by incorporating branching process-derived probability distribution of resistance to estimate oseltamivir-induced resistance risk.

RESULTS

Mutation rate and sensitive strain number were key determinants in assessing resistance risk. By increasing immune response, antiviral efficacy, and fitness cost, the spread of resistant strains for A (H1N1) and A (H3N2) were greatly decreased. Probability of resistance depends most strongly on the sensitive strain number described by a Poisson model. Risk of oseltamivir-induced resistance increased with increasing the mutation rate for A (H1N1) only. The ≥50% of resistance risk induced by A (H1N1) and A (H3N2) sensitive infected cells were 0.4 (95% CI: 0.28-0.43) and 0.95 (95% CI 0.93-0.99) at a mutation rate of 10, respectively. Antiviral drugs must be administrated within 1-1.5 days for A (H1N1) and 2-2.5 days for A (H3N2) virus infections to limit viral production.

CONCLUSION

Probabilistic risk assessment of antiviral drug-induced resistance is crucial in the decision-making process for preventing influenza virus infections.

摘要

背景

耐药率较高且传播适应度代价较低的奥司他韦耐药突变体尚未在流感(亚)型病毒中出现。预测神经氨酸酶抑制剂疗法对耐药病毒株感染率和传播的影响需要进一步研究。

目的

本研究旨在评估奥司他韦诱导甲型流感病毒(H1N1)和甲型流感病毒(H3N2)耐药的潜在风险。

材料与方法

基于免疫反应的病毒动力学模型用于最佳拟合奥司他韦耐药甲型流感病毒(H1N1)和甲型流感病毒(H3N2)的感染数据。通过纳入基于分支过程的耐药概率分布,开发了一个概率风险评估模型,以估计奥司他韦诱导的耐药风险。

结果

突变率和敏感菌株数量是评估耐药风险的关键决定因素。通过提高免疫反应、抗病毒疗效和适应度代价,甲型流感病毒(H1N1)和甲型流感病毒(H3N2)耐药菌株的传播大幅减少。耐药概率最强烈地取决于泊松模型描述的敏感菌株数量。仅甲型流感病毒(H1N1)的奥司他韦诱导耐药风险随突变率增加而增加。在突变率为10时,甲型流感病毒(H1N1)和甲型流感病毒(H3N2)敏感感染细胞诱导的耐药风险≥50%分别为0.4(95%置信区间:0.28 - 0.43)和0.95(95%置信区间0.93 - 0.99)。对于甲型流感病毒(H1N1)感染,抗病毒药物必须在1 - 1.5天内给药,对于甲型流感病毒(H3N2)感染,必须在2 - 2.5天内给药,以限制病毒产生。

结论

抗病毒药物诱导耐药的概率风险评估在预防流感病毒感染的决策过程中至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce29/5529381/c17eafdabe9a/idr-10-215Fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验