Institute of Organic Chemistry, Johannes Gutenberg University Mainz , 55128 Mainz, Germany.
Graduate School Materials Science in Mainz, Johannes Gutenberg University Mainz , 55128 Mainz, Germany.
J Am Chem Soc. 2017 Sep 6;139(35):12317-12324. doi: 10.1021/jacs.7b07488. Epub 2017 Aug 28.
The electrochemical synthesis of pyrazolidine-3,5-diones and benzoxazoles by N-N bond formation and C,O linkage, respectively, represents an easy access to medicinally relevant structures. Electrochemistry as a key technology ensures a safe and sustainable approach. We gained insights in the mechanism of these reactions by combining cyclovoltammetric and synthetic studies. The electron-transfer behavior of anilides and dianilides was studied and led to the following conclusion: The N-N bond formation involves a diradical as intermediate, whereas the benzoxazole formation is based on a cationic mechanism. Besides these studies, we developed a synthetic route to mixed dianilides as starting materials for the N-N coupling. The compatibility with valuable functionalities like triflates and mesylates for follow-up reactions as well as the comparison of different electrochemical set-ups also enhanced the applicability of this method.
电化学合成吡唑烷-3,5-二酮和苯并恶唑分别代表了一种易于获得具有医学相关性结构的方法。电化学作为一种关键技术,确保了安全和可持续的方法。通过结合循环伏安法和合成研究,我们深入了解了这些反应的机制。我们研究了酰亚胺和二酰亚胺的电子转移行为,并得出以下结论:N-N 键的形成涉及自由基作为中间体,而苯并恶唑的形成则基于阳离子机制。除了这些研究,我们还开发了一种合成混合二酰亚胺的路线,作为 N-N 偶联的起始原料。该方法与三氟甲磺酸酯和甲磺酸酯等有价值的官能团兼容,可用于后续反应,不同电化学装置的比较也提高了该方法的适用性。