Quail P H, Colbert J T, Peters N K, Christensen A H, Sharrock R A, Lissemore J L
Philos Trans R Soc Lond B Biol Sci. 1986 Nov 17;314(1166):469-80. doi: 10.1098/rstb.1986.0066.
In attempting to understand the mechanism of phytochrome action we are studying structural properties of the photoreceptor molecule and the autoregulation of expression of phytochrome genes. Run-off transcription assays in isolated nuclei from Avena indicate that phytochrome decreases the transcription of its own genes threefold in less than 15 min form Pfr formation. The extent of this decrease is insufficient to account for the observed 10- to 50-fold decrease in mature phytochrome mRNA levels, suggesting that enhanced degradation may also play a significant role in determining the level of this mRNA. Structural analysis of native phytochrome from Avena indicates that the molecule is an elongated dimer of 124 kDa monomers, each consisting of a globular, 74 kDa, NH2-terminal domain bearing the single chromophore at Cys-321, and a more open COOH-terminal domain that bears the dimerization site. Controlled proteolysis and binding of monoclonal antibodies to mapped epitopes has identified two regions, one in the 6-10 kDa NH2-terminal segment and the other ca. 70 kDa from the NH2-terminus, that undergo photoconversion-induced conformational changes and are therefore candidates for involvement in the molecule's regulatory function. Comparison of the full-length amino acid sequences of Avena and Cucurbita phytochromes, derived from nucleotide sequence analysis, indicates overall homology of 65%. The most highly conserved regions are those immediately surrounding the chromophore attachment site, where 29 residues are invariant, and a hydrophobic region between residues 150 and 300, postulated to form a cavity containing the chromophore. In contrast, a strikingly lower level of homology exists at the COOH-terminus of the polypeptide between residues 800 and 1128, indicating a possible lack of involvement of this region in phytochrome function.
为了理解光敏色素的作用机制,我们正在研究光受体分子的结构特性以及光敏色素基因表达的自动调节。对燕麦离体细胞核进行的连续转录分析表明,从Pfr形成开始,光敏色素在不到15分钟的时间内将其自身基因的转录降低了三倍。这种降低的程度不足以解释成熟光敏色素mRNA水平所观察到的10至50倍的下降,这表明增强的降解在决定这种mRNA的水平方面可能也起着重要作用。对燕麦天然光敏色素的结构分析表明,该分子是由124 kDa单体组成的细长二聚体,每个单体由一个球状的、74 kDa的NH2末端结构域(在Cys-321处带有单个发色团)和一个更开放的COOH末端结构域(带有二聚化位点)组成。对单克隆抗体与定位表位的可控蛋白水解和结合已确定了两个区域,一个在6至10 kDa的NH2末端片段中,另一个在距NH2末端约70 kDa处,它们经历光转换诱导的构象变化,因此是参与分子调节功能的候选区域。通过核苷酸序列分析得出的燕麦和南瓜光敏色素全长氨基酸序列的比较表明,总体同源性为65%。最保守的区域是紧邻发色团附着位点的那些区域,其中29个残基是不变的,以及残基150和300之间的一个疏水区域,推测该区域形成一个包含发色团的腔。相比之下,在多肽的COOH末端残基800和1128之间存在明显较低水平的同源性,表明该区域可能不参与光敏色素的功能。