Suppr超能文献

一种针叶树 UDP-糖依赖型糖基转移酶参与了苯乙酮代谢和对昆虫的防御。

A Conifer UDP-Sugar Dependent Glycosyltransferase Contributes to Acetophenone Metabolism and Defense against Insects.

机构信息

Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada.

Norwegian Institute for Bioeconomy Research, NO-1430 As, Norway.

出版信息

Plant Physiol. 2017 Oct;175(2):641-651. doi: 10.1104/pp.17.00611. Epub 2017 Aug 9.

Abstract

Acetophenones are phenolic compounds involved in the resistance of white spruce () against spruce budworm (), a major forest pest in North America. The acetophenones pungenol and piceol commonly accumulate in spruce foliage in the form of the corresponding glycosides, pungenin and picein. These glycosides appear to be inactive against the insect but can be cleaved by a spruce β-glucosidase, PgβGLU-1, which releases the active aglycons. The reverse glycosylation reaction was hypothesized to involve a family 1 UDP-sugar dependent glycosyltransferase (UGT) to facilitate acetophenone accumulation in the plant. Metabolite and transcriptome profiling over a developmental time course of white spruce bud burst and shoot growth revealed two UGTs, PgUGT5 and PgUGT5b, that glycosylate pungenol. Recombinant PgUGT5b enzyme produced mostly pungenin, while PgUGT5 produced mostly isopungenin. Both UGTs also were active in vitro on select flavonoids. However, the context of transcript and metabolite accumulation did not support a biological role in flavonoid metabolism but correlated with the formation of pungenin in growing shoots. Transcript levels of were higher than those of in needles across different genotypes of white spruce. These results support a role of PgUGT5b in the biosynthesis of the glycosylated acetophenone pungenin in white spruce.

摘要

乙酰苯类化合物参与了白云杉()抵抗云杉卷叶蛾()的过程,云杉卷叶蛾是北美主要的森林害虫。乙酰苯类化合物 pungenol 和 piceol 通常以相应糖苷 pungenin 和 picein 的形式在云杉叶子中积累。这些糖苷似乎对昆虫没有活性,但可以被云杉 β-葡萄糖苷酶 PgβGLU-1 切割,释放出活性糖苷配基。假设反糖苷化反应涉及家族 1 UDP-糖依赖性糖基转移酶(UGT),以促进植物中乙酰苯类化合物的积累。在白云杉芽爆发和枝条生长的发育时间过程中进行代谢物和转录组谱分析,发现了两种 UGTs,即 PgUGT5 和 PgUGT5b,它们能够糖基化 pungenol。重组 PgUGT5b 酶主要产生 pungenin,而 PgUGT5 主要产生异 pungenin。两种 UGT 在体外对某些类黄酮也具有活性。然而,转录物和代谢物积累的情况并不支持其在类黄酮代谢中的生物学作用,而是与生长枝条中 pungenin 的形成相关。在不同基因型的白云杉针中,的转录水平高于的转录水平。这些结果支持 PgUGT5b 在白云杉中糖基化乙酰苯类化合物 pungenin 的生物合成中的作用。

相似文献

1
A Conifer UDP-Sugar Dependent Glycosyltransferase Contributes to Acetophenone Metabolism and Defense against Insects.
Plant Physiol. 2017 Oct;175(2):641-651. doi: 10.1104/pp.17.00611. Epub 2017 Aug 9.
2
function of in the release of acetophenones in white spruce.
PeerJ. 2017 Jul 7;5:e3535. doi: 10.7717/peerj.3535. eCollection 2017.
4
Evolution of the biosynthesis of two hydroxyacetophenones in plants.
Plant Cell Environ. 2018 Mar;41(3):620-629. doi: 10.1111/pce.13134. Epub 2018 Jan 29.
5
Hydroxyacetophenone defenses in white spruce against spruce budworm.
Evol Appl. 2019 Dec 20;13(1):62-75. doi: 10.1111/eva.12885. eCollection 2020 Jan.
6
Association genetics of acetophenone defence against spruce budworm in mature white spruce.
BMC Plant Biol. 2018 Oct 12;18(1):231. doi: 10.1186/s12870-018-1434-y.
8
Phenological shifts in conifer species stressed by spruce budworm defoliation.
Tree Physiol. 2019 Apr 1;39(4):590-605. doi: 10.1093/treephys/tpy135.

引用本文的文献

3
Anticancer Activities of Marine-Derived Phenolic Compounds and Their Derivatives.
Molecules. 2022 Feb 21;27(4):1449. doi: 10.3390/molecules27041449.
4
Genomic selection for resistance to spruce budworm in white spruce and relationships with growth and wood quality traits.
Evol Appl. 2020 Aug 11;13(10):2704-2722. doi: 10.1111/eva.13076. eCollection 2020 Dec.
5
Hydroxyacetophenone defenses in white spruce against spruce budworm.
Evol Appl. 2019 Dec 20;13(1):62-75. doi: 10.1111/eva.12885. eCollection 2020 Jan.
6
Functional Differentiation of Duplicated Flavonoid 3--Glycosyltransferases in the Flavonol and Anthocyanin Biosynthesis of .
Front Plant Sci. 2019 Oct 18;10:1330. doi: 10.3389/fpls.2019.01330. eCollection 2019.
7
Detoxification of host plant phenolic aglycones by the spruce budworm.
PLoS One. 2019 May 16;14(5):e0208288. doi: 10.1371/journal.pone.0208288. eCollection 2019.
8
A molecular and genomic reference system for conifer defence against insects.
Plant Cell Environ. 2019 Oct;42(10):2844-2859. doi: 10.1111/pce.13571. Epub 2019 Jun 21.
9
Association genetics of acetophenone defence against spruce budworm in mature white spruce.
BMC Plant Biol. 2018 Oct 12;18(1):231. doi: 10.1186/s12870-018-1434-y.

本文引用的文献

2
Functional Characterization and Substrate Promiscuity of UGT71 Glycosyltransferases from Strawberry (Fragaria × ananassa).
Plant Cell Physiol. 2015 Dec;56(12):2478-93. doi: 10.1093/pcp/pcv151. Epub 2015 Oct 10.
6
Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms.
Nat Biotechnol. 2014 May;32(5):462-4. doi: 10.1038/nbt.2862. Epub 2014 Apr 20.
7
Trimmomatic: a flexible trimmer for Illumina sequence data.
Bioinformatics. 2014 Aug 1;30(15):2114-20. doi: 10.1093/bioinformatics/btu170. Epub 2014 Apr 1.
8
voom: Precision weights unlock linear model analysis tools for RNA-seq read counts.
Genome Biol. 2014 Feb 3;15(2):R29. doi: 10.1186/gb-2014-15-2-r29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验