Zhai Rui, Zhang Hongjuan, Xie Yinpeng, Zhang Shichao, Zhou Fengli, Du Xuan, Chen Weifeng, Yan YanFang, Zhang Jing, Li Pengmin, Atkinson Ross, Wang Zhigang, Yang Chengquan, Guan Qingmei, Ma Fengwang, Xu Lingfei
College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China.
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, Northwest A&F University, Yangling, Shaanxi, China.
Nat Plants. 2025 Sep 5. doi: 10.1038/s41477-025-02082-x.
Acetophenones, which show scattered distribution across phylogenetically distant plants and fungi, play diverse roles in plant-plant, plant-insect, plant-microbiome and even animal-insect interactions. However, the enzymatic basis of acetophenone biosynthesis in plants remains unknown. Here we elucidate the complete biosynthetic pathway of picein (4-hydroxyacetophenone glucoside) from 4-coumaroyl-CoA using pear (Pyrus) as a study system. We demonstrate that in certain pear cultivars, the acetophenone moiety originates from an impaired side-chain shortening reaction of an aromatic 3-ketoacyl-CoA intermediate, a key step in the β-oxidative biosynthesis of benzoic acid. This impairment results from a loss-of-function mutation in a peroxisomal 3-ketoacyl-CoA thiolase. The accumulated aromatic 3-ketoacyl-CoA is subsequently hydrolysed by a thioesterase and undergoes spontaneous decarboxylation to yield the acetophenone moiety. This rare metabolic phenomenon highlights that not only neofunctionalization but also loss-of-function mutations can drive diversification in plant secondary metabolism. Forward genetic approaches are powerful to shed light on such 'hidden' or recessive pathways in plants.
苯乙酮在系统发育上相距甚远的植物和真菌中呈分散分布,在植物与植物、植物与昆虫、植物与微生物群落甚至动物与昆虫的相互作用中发挥着多种作用。然而,植物中苯乙酮生物合成的酶学基础仍然未知。在这里,我们以梨(Pyrus)为研究系统,阐明了从4-香豆酰辅酶A合成松酯醇(4-羟基苯乙酮葡萄糖苷)的完整生物合成途径。我们证明,在某些梨品种中,苯乙酮部分源自芳香族3-酮酰基辅酶A中间体侧链缩短反应的受损,这是苯甲酸β-氧化生物合成中的关键步骤。这种损伤是由过氧化物酶体3-酮酰基辅酶A硫解酶的功能丧失突变引起的。积累的芳香族3-酮酰基辅酶A随后被硫酯酶水解,并发生自发脱羧反应,生成苯乙酮部分。这种罕见的代谢现象表明,不仅新功能化,而且功能丧失突变也可以推动植物次生代谢的多样化。正向遗传学方法对于揭示植物中此类“隐藏”或隐性途径很有帮助。