Gallas Brandon D, Anam Amrita, Chen Weijie, Wunderlich Adam, Zhang Zhiwei
CDRH/OSEL Division of Imaging, Diagnostics, and Software Reliability, 10903 New Hampshire Ave, Silver Spring, MD, 20993.
UMBC, Department of Information Systems, 1000 Hilltop Cir, Baltimore, MD 21250.
Proc SPIE Int Soc Opt Eng. 2016;9787. doi: 10.1117/12.2217074. Epub 2016 Mar 24.
The purpose of this work is to present and evaluate methods based on U-statistics to compare intra- or inter-reader agreement across different imaging modalities. We apply these methods to multi-reader multi-case (MRMC) studies. We measure reader-averaged agreement and estimate its variance accounting for the variability from readers and cases (an MRMC analysis). In our application, pathologists (readers) evaluate patient tissue mounted on glass slides (cases) in two ways. They evaluate the slides on a microscope (reference modality) and they evaluate digital scans of the slides on a computer display (new modality). In the current work, we consider concordance as the agreement measure, but many of the concepts outlined here apply to other agreement measures. Concordance is the probability that two readers rank two cases in the same order. Concordance can be estimated with a U-statistic and thus it has some nice properties: it is unbiased, asymptotically normal, and its variance is given by an explicit formula. Another property of a U-statistic is that it is symmetric in its inputs; it doesn't matter which reader is listed first or which case is listed first, the result is the same. Using this property and a few tricks while building the U-statistic kernel for concordance, we get a mathematically tractable problem and efficient software. Simulations show that our variance and covariance estimates are unbiased.
这项工作的目的是展示和评估基于U统计量的方法,以比较不同成像模态下读者内部或读者之间的一致性。我们将这些方法应用于多读者多病例(MRMC)研究。我们测量读者平均一致性,并估计其方差,同时考虑到读者和病例的变异性(MRMC分析)。在我们的应用中,病理学家(读者)以两种方式评估安装在载玻片上的患者组织(病例)。他们在显微镜下评估载玻片(参考模态),并在计算机显示器上评估载玻片的数字扫描图像(新模态)。在当前工作中,我们将一致性作为一致性度量,但这里概述的许多概念也适用于其他一致性度量。一致性是指两位读者以相同顺序对两个病例进行排序的概率。一致性可以用U统计量来估计,因此它具有一些良好的性质:它是无偏的、渐近正态的,其方差由一个显式公式给出。U统计量的另一个性质是它在输入中是对称的;第一位列出的读者或第一位列出的病例无关紧要,结果是相同的。在构建用于一致性的U统计量核时,利用这个性质和一些技巧,我们得到了一个数学上易于处理的问题和高效的软件。模拟表明,我们对方差和协方差的估计是无偏的。