Chen Weijie, Wunderlich Adam, Petrick Nicholas, Gallas Brandon D
Food and Drug Administration, Center for Devices and Radiological Health , Office of Science and Engineering Laboratories, Division of Imaging, Diagnostics, and Software Reliability, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, United States.
J Med Imaging (Bellingham). 2014 Oct;1(3):031011. doi: 10.1117/1.JMI.1.3.031011. Epub 2014 Dec 4.
We treat multireader multicase (MRMC) reader studies for which a reader's diagnostic assessment is converted to binary agreement (1: agree with the truth state, 0: disagree with the truth state). We present a mathematical model for simulating binary MRMC data with a desired correlation structure across readers, cases, and two modalities, assuming the expected probability of agreement is equal for the two modalities ([Formula: see text]). This model can be used to validate the coverage probabilities of 95% confidence intervals (of [Formula: see text], [Formula: see text], or [Formula: see text] when [Formula: see text]), validate the type I error of a superiority hypothesis test, and size a noninferiority hypothesis test (which assumes [Formula: see text]). To illustrate the utility of our simulation model, we adapt the Obuchowski-Rockette-Hillis (ORH) method for the analysis of MRMC binary agreement data. Moreover, we use our simulation model to validate the ORH method for binary data and to illustrate sizing in a noninferiority setting. Our software package is publicly available on the Google code project hosting site for use in simulation, analysis, validation, and sizing of MRMC reader studies with binary agreement data.
我们处理多读者多病例(MRMC)读者研究,其中读者的诊断评估被转换为二元一致性(1:与真实状态一致,0:与真实状态不一致)。我们提出了一个数学模型,用于模拟具有跨读者、病例和两种模式的期望相关结构的二元MRMC数据,假设两种模式下一致性的预期概率相等([公式:见原文])。该模型可用于验证95%置信区间(当[公式:见原文]时为[公式:见原文]、[公式:见原文]或[公式:见原文])的覆盖概率,验证优越性假设检验的I型错误,并确定非劣效性假设检验的样本量(假设[公式:见原文])。为了说明我们模拟模型的实用性,我们采用Obuchowski-Rockette-Hillis(ORH)方法来分析MRMC二元一致性数据。此外,我们使用模拟模型来验证二元数据的ORH方法,并说明非劣效性设置中的样本量确定。我们的软件包可在谷歌代码项目托管网站上公开获取,用于具有二元一致性数据的MRMC读者研究的模拟、分析、验证和样本量确定。