Biehler J, Wall W A
Institute for Computational Mechanics, Technische Universität München, Boltzmannstraße 15, Garching, 85748, Germany.
Int J Numer Method Biomed Eng. 2018 Feb;34(2). doi: 10.1002/cnm.2922. Epub 2017 Aug 31.
If computational models are ever to be used in high-stakes decision making in clinical practice, the use of personalized models and predictive simulation techniques is a must. This entails rigorous quantification of uncertainties as well as harnessing available patient-specific data to the greatest extent possible. Although researchers are beginning to realize that taking uncertainty in model input parameters into account is a necessity, the predominantly used probabilistic description for these uncertain parameters is based on elementary random variable models. In this work, we set out for a comparison of different probabilistic models for uncertain input parameters using the example of an uncertain wall thickness in finite element models of abdominal aortic aneurysms. We provide the first comparison between a random variable and a random field model for the aortic wall and investigate the impact on the probability distribution of the computed peak wall stress. Moreover, we show that the uncertainty about the prevailing peak wall stress can be reduced if noninvasively available, patient-specific data are harnessed for the construction of the probabilistic wall thickness model.
如果计算模型要用于临床实践中的高风险决策,那么使用个性化模型和预测模拟技术是必不可少的。这需要对不确定性进行严格量化,并尽可能充分利用可用的患者特定数据。尽管研究人员开始意识到考虑模型输入参数中的不确定性是必要的,但对这些不确定参数主要使用的概率描述是基于基本随机变量模型。在这项工作中,我们以腹主动脉瘤有限元模型中不确定的壁厚为例,对不确定输入参数的不同概率模型进行比较。我们首次比较了主动脉壁的随机变量模型和随机场模型,并研究了其对计算得到的峰值壁应力概率分布的影响。此外,我们表明,如果利用无创可得的患者特定数据来构建概率壁厚模型,那么关于主要峰值壁应力的不确定性可以降低。