IEEE J Biomed Health Inform. 2018 Jul;22(4):1218-1226. doi: 10.1109/JBHI.2017.2731873. Epub 2017 Aug 7.
Breast lesion detection using ultrasound imaging is considered an important step of computer-aided diagnosis systems. Over the past decade, researchers have demonstrated the possibilities to automate the initial lesion detection. However, the lack of a common dataset impedes research when comparing the performance of such algorithms. This paper proposes the use of deep learning approaches for breast ultrasound lesion detection and investigates three different methods: a Patch-based LeNet, a U-Net, and a transfer learning approach with a pretrained FCN-AlexNet. Their performance is compared against four state-of-the-art lesion detection algorithms (i.e., Radial Gradient Index, Multifractal Filtering, Rule-based Region Ranking, and Deformable Part Models). In addition, this paper compares and contrasts two conventional ultrasound image datasets acquired from two different ultrasound systems. Dataset A comprises 306 (60 malignant and 246 benign) images and Dataset B comprises 163 (53 malignant and 110 benign) images. To overcome the lack of public datasets in this domain, Dataset B will be made available for research purposes. The results demonstrate an overall improvement by the deep learning approaches when assessed on both datasets in terms of True Positive Fraction, False Positives per image, and F-measure.
使用超声成像进行乳腺病变检测被认为是计算机辅助诊断系统的重要步骤。在过去的十年中,研究人员已经证明了自动化初始病变检测的可能性。然而,由于缺乏通用数据集,在比较这些算法的性能时,研究受到了阻碍。本文提出了使用深度学习方法进行乳腺超声病变检测,并研究了三种不同的方法:基于补丁的 LeNet、U-Net 和带有预训练 FCN-AlexNet 的迁移学习方法。将它们的性能与四种最先进的病变检测算法(即径向梯度指数、多分形滤波、基于规则的区域排序和可变形部件模型)进行了比较。此外,本文还比较和对比了两个来自两个不同超声系统的传统超声图像数据集。数据集 A 包括 306 张(60 张恶性和 246 张良性)图像,数据集 B 包括 163 张(53 张恶性和 110 张良性)图像。为了克服该领域缺乏公共数据集的问题,数据集 B 将可供研究使用。结果表明,在这两个数据集上,深度学习方法在真阳性分数、每张图像的假阳性和 F 度量方面都有了整体提高。