Suppr超能文献

MUNet:基于UNet的多尺度特征获取与多输入边缘补充用于超声图像中乳腺肿瘤的高效分割

MUNet: Multi-Scale Feature Acquisition and Multi-Input Edge Supplement Based on UNet for Efficient Segmentation of Breast Tumor in Ultrasound Images.

作者信息

Pan Lin, Tang Mengshi, Chen Xin, Du Zhongshi, Huang Danfeng, Yang Mingjing, Chen Yijie

机构信息

College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China.

Department of Ultrasound, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China.

出版信息

Diagnostics (Basel). 2025 Apr 8;15(8):944. doi: 10.3390/diagnostics15080944.

Abstract

The morphological characteristics of breast tumors play a crucial role in the preliminary diagnosis of breast cancer. However, malignant tumors often exhibit rough, irregular edges and unclear, boundaries in ultrasound images. Additionally, variations in tumor size, location, and shape further complicate the accurate segmentation of breast tumors from ultrasound images. For these difficulties, this paper introduces a breast ultrasound tumor segmentation network comprising a multi-scale feature acquisition (MFA) module and a multi-input edge supplement (MES) module. The MFA module effectively incorporates dilated convolutions of various sizes in a serial-parallel fashion to capture tumor features at diverse scales. Then, the MES module is employed to enhance the output of each decoder layer by supplementing edge information. This process aims to improve the overall integrity of tumor boundaries, contributing to more refined segmentation results. The mean Dice (mDice), Pixel Accuracy (PA), Intersection over Union (IoU), Recall, and Hausdorff Distance (HD) of this method for the publicly available breast ultrasound image (BUSI) dataset were 79.43%, 96.84%, 83.00%, 87.17%, and 19.71 mm, respectively, and for the dataset of Fujian Cancer Hospital, 90.45%, 97.55%, 90.08%, 93.72%, and 11.02 mm, respectively. In the BUSI dataset, compared to the original UNet, the Dice for malignant tumors increased by 14.59%, and the HD decreased by 17.13 mm. Our method is capable of accurately segmenting breast tumor ultrasound images, which provides very valuable edge information for subsequent diagnosis of breast cancer. The experimental results show that our method has made substantial progress in improving accuracy.

摘要

乳腺肿瘤的形态特征在乳腺癌的初步诊断中起着至关重要的作用。然而,恶性肿瘤在超声图像中通常表现为边缘粗糙、不规则且边界不清晰。此外,肿瘤大小、位置和形状的变化进一步使从超声图像中准确分割乳腺肿瘤变得复杂。针对这些困难,本文介绍了一种乳腺超声肿瘤分割网络,该网络包括多尺度特征获取(MFA)模块和多输入边缘补充(MES)模块。MFA模块以串并联方式有效地合并了各种大小的空洞卷积,以捕获不同尺度的肿瘤特征。然后,采用MES模块通过补充边缘信息来增强每个解码器层的输出。这一过程旨在提高肿瘤边界的整体完整性,有助于获得更精细的分割结果。该方法在公开可用的乳腺超声图像(BUSI)数据集上的平均Dice(mDice)、像素准确率(PA)、交并比(IoU)、召回率和豪斯多夫距离(HD)分别为79.43%、96.84%、83.00%、87.17%和19.71毫米,在福建肿瘤医院的数据集上分别为90.45%、97.55%、90.08%、93.72%和11.02毫米。在BUSI数据集中,与原始U-Net相比,恶性肿瘤的Dice增加了14.59%,HD减少了17.13毫米。我们的方法能够准确分割乳腺肿瘤超声图像,为后续乳腺癌诊断提供了非常有价值的边缘信息。实验结果表明,我们的方法在提高准确率方面取得了显著进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb1c/12025914/c8827e7c8f6d/diagnostics-15-00944-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验