Suppr超能文献

使用基于命名游戏的方法检测群落。

Detection of communities with Naming Game-based methods.

作者信息

Uzun Thais Gobet, Ribeiro Carlos Henrique Costa

机构信息

Dept. of Computer Science, Aeronautics Institute of Technology, Sao Jose dos Campos, Sao Paulo - Brazil.

出版信息

PLoS One. 2017 Aug 10;12(8):e0182737. doi: 10.1371/journal.pone.0182737. eCollection 2017.

Abstract

Complex networks are often organized in groups or communities of agents that share the same features and/or functions, and this structural organization is built naturally with the formation of the system. In social networks, we argue that the dynamic of linguistic interactions of agreement among people can be a crucial factor in generating this community structure, given that sharing opinions with another person bounds them together, and disagreeing constantly would probably weaken the relationship. We present here a computational model of opinion exchange that uncovers the community structure of a network. Our aim is not to present a new community detection method proper, but to show how a model of social communication dynamics can reveal the (simple and overlapping) community structure in an emergent way. Our model is based on a standard Naming Game, but takes into consideration three social features: trust, uncertainty and opinion preference, that are built over time as agents communicate among themselves. We show that the separate addition of each social feature in the Naming Game results in gradual improvements with respect to community detection. In addition, the resulting uncertainty and trust values classify nodes and edges according to role and position in the network. Also, our model has shown a degree of accuracy both for non-overlapping and overlapping communities that are comparable with most algorithms specifically designed for topological community detection.

摘要

复杂网络通常由具有相同特征和/或功能的主体群体或社区组成,这种结构组织是随着系统的形成自然构建的。在社交网络中,我们认为人与人之间达成一致的语言互动动态可能是产生这种社区结构的关键因素,因为与他人分享意见会将他们联系在一起,而不断地意见不合可能会削弱这种关系。我们在此提出一种意见交流的计算模型,该模型揭示了网络的社区结构。我们的目的不是提出一种全新的社区检测方法,而是展示一个社会交流动态模型如何以一种涌现的方式揭示(简单且重叠的)社区结构。我们的模型基于标准的命名博弈,但考虑了三个社会特征:信任、不确定性和意见偏好,这些特征是随着主体之间的交流随着时间推移而建立起来的。我们表明,在命名博弈中分别添加每个社会特征会在社区检测方面带来逐步改进。此外,由此产生的不确定性和信任值会根据网络中的角色和位置对节点和边进行分类。而且,我们的模型对于非重叠和重叠社区都显示出一定程度的准确性,可与大多数专门为拓扑社区检测设计的算法相媲美。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9639/5552283/3ce9f0edf71c/pone.0182737.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验