Mattiroli Francesca, Bhattacharyya Sudipta, Dyer Pamela N, White Alison E, Sandman Kathleen, Burkhart Brett W, Byrne Kyle R, Lee Thomas, Ahn Natalie G, Santangelo Thomas J, Reeve John N, Luger Karolin
Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA.
Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.
Science. 2017 Aug 11;357(6351):609-612. doi: 10.1126/science.aaj1849.
Small basic proteins present in most Archaea share a common ancestor with the eukaryotic core histones. We report the crystal structure of an archaeal histone-DNA complex. DNA wraps around an extended polymer, formed by archaeal histone homodimers, in a quasi-continuous superhelix with the same geometry as DNA in the eukaryotic nucleosome. Substitutions of a conserved glycine at the interface of adjacent protein layers destabilize archaeal chromatin, reduce growth rate, and impair transcription regulation, confirming the biological importance of the polymeric structure. Our data establish that the histone-based mechanism of DNA compaction predates the nucleosome, illuminating the origin of the nucleosome.
大多数古细菌中存在的小碱性蛋白与真核核心组蛋白有着共同的祖先。我们报道了一种古细菌组蛋白 - DNA复合物的晶体结构。DNA围绕着由古细菌组蛋白同型二聚体形成的延伸聚合物,形成一个准连续的超螺旋,其几何结构与真核核小体中的DNA相同。相邻蛋白质层界面处保守甘氨酸的取代会破坏古细菌染色质的稳定性,降低生长速率,并损害转录调控,这证实了聚合物结构的生物学重要性。我们的数据表明,基于组蛋白的DNA压缩机制早于核小体,阐明了核小体的起源。