Islam Tanzila, Resat Haluk
The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA.
Mol Biosyst. 2017 Sep 26;13(10):2069-2082. doi: 10.1039/c7mb00390k.
Enhanced cell motility is one of the primary features of cancer. Accumulated evidence demonstrates that Epidermal Growth Factor Receptor (EGFR) mediated pathways play an important role in breast cancer cell proliferation and migration. We have quantified the MDA-MB-231 breast cancer cell migration in response to the stimulation of EGFR pathways with their ligand EGF to determine how the cell motility of MDA-MB-231 cells depends on the ligand concentration and gradient. Analysis at the single cell level combined with mathematical modeling and the ability to vary the ligand concentration and gradients locally using microfluidic devices allowed us to separate the unique contributions of ligand concentration and ligand gradient to cell motility. We tracked the motility of 6600 cells individually using time lapse imaging under varying EGF stimulation conditions. Trajectory analysis of the tracked cells using non-linear multivariate regression models showed that: (i) cell migration of MDA-MB-231 breast cancer cells depends on the ligand gradient but not on the ligand concentration. This observation was valid for both the total (direction independent) and directed (along gradient direction) cell velocities. Although the dependence of the directed motility on ligand gradient is to be expected, the dependence of the total velocity solely on ligand gradient was an unexpected novel observation. (ii) Enhancement of the motilities of individual cells in a population upon exposure to the ligand was highly heterogeneous, and only a very small percentage of cells responded strongly to the external stimuli. Separating out the non-responding cells using quantitative analysis of individual cell motilities enabled us to establish that enhanced motility of the responding cells indeed increases monotonically with increasing EGF gradient. (iii) A large proportion of cells in a population were unresponsive to ligand stimulation, and their presence introduced considerable random intrinsic variability to the observations. This indicated that studying cell motilities at the individual cell level is necessary to better capture the biological reality and that population averaging methods should be avoided. Studying motilities at the individual cell level is particularly important to understand the biological processes that are possibly driven by the action of a small portion of cells in a population, such as metastasis. We discuss the implications of our results on the total and chemotactic movement of cancer cells in the tumor microenvironment.
增强的细胞运动性是癌症的主要特征之一。越来越多的证据表明,表皮生长因子受体(EGFR)介导的信号通路在乳腺癌细胞的增殖和迁移中起着重要作用。我们通过用其配体表皮生长因子(EGF)刺激EGFR信号通路,对MDA-MB-231乳腺癌细胞的迁移进行了定量分析,以确定MDA-MB-231细胞的运动性如何依赖于配体浓度和梯度。单细胞水平的分析结合数学建模以及使用微流控装置局部改变配体浓度和梯度的能力,使我们能够区分配体浓度和配体梯度对细胞运动性的独特贡献。我们在不同的EGF刺激条件下,使用延时成像分别追踪了6600个细胞的运动。使用非线性多元回归模型对追踪细胞进行轨迹分析表明:(i)MDA-MB-231乳腺癌细胞的迁移依赖于配体梯度,而不依赖于配体浓度。这一观察结果对于总(与方向无关)细胞速度和定向(沿梯度方向)细胞速度均有效。虽然定向运动对配体梯度的依赖性是可以预期的,但总速度仅依赖于配体梯度却是一个意外的新发现。(ii)群体中单个细胞在暴露于配体后运动性的增强具有高度异质性,只有非常小比例的细胞对外部刺激有强烈反应。通过对单个细胞运动性进行定量分析分离出无反应细胞,使我们能够确定有反应细胞增强的运动性确实随着EGF梯度的增加而单调增加。(iii)群体中很大一部分细胞对配体刺激无反应,它们的存在给观察结果带来了相当大的随机内在变异性。这表明在单细胞水平研究细胞运动性对于更好地捕捉生物学现实是必要的,应避免群体平均方法。在单细胞水平研究运动性对于理解可能由群体中一小部分细胞的作用驱动的生物学过程(如转移)尤为重要。我们讨论了我们的结果对肿瘤微环境中癌细胞的总运动和趋化运动的影响。