Unachukwu Uchenna J, Sauane Moira, Vazquez Maribel, Redenti Stephen
Biochemistry Doctoral Program, The Graduate School and University Center, City University of New York, New York, New York, United States of America.
Department of Biological Sciences, Herbert Lehman College, City University of New York, Bronx, New York, United States of America.
PLoS One. 2013 Dec 23;8(12):e83906. doi: 10.1371/journal.pone.0083906. eCollection 2013.
A growing number of studies are evaluating retinal progenitor cell (RPC) transplantation as an approach to repair retinal degeneration and restore visual function. To advance cell-replacement strategies for a practical retinal therapy, it is important to define the molecular and biochemical mechanisms guiding RPC motility. We have analyzed RPC expression of the epidermal growth factor receptor (EGFR) and evaluated whether exposure to epidermal growth factor (EGF) can coordinate motogenic activity in vitro. Using Boyden chamber analysis as an initial high-throughput screen, we determined that RPC motility was optimally stimulated by EGF concentrations in the range of 20-400 ng/ml, with decreased stimulation at higher concentrations, suggesting concentration-dependence of EGF-induced motility. Using bioinformatics analysis of the EGF ligand in a retina-specific gene network pathway, we predicted a chemotactic function for EGF involving the MAPK and JAK-STAT intracellular signaling pathways. Based on targeted inhibition studies, we show that ligand binding, phosphorylation of EGFR and activation of the intracellular STAT3 and PI3kinase signaling pathways are necessary to drive RPC motility. Using engineered microfluidic devices to generate quantifiable steady-state gradients of EGF coupled with live-cell tracking, we analyzed the dynamics of individual RPC motility. Microfluidic analysis, including center of mass and maximum accumulated distance, revealed that EGF induced motility is chemokinetic with optimal activity observed in response to low concentration gradients. Our combined results show that EGFR expressing RPCs exhibit enhanced chemokinetic motility in the presence of low nanomole levels of EGF. These findings may serve to inform further studies evaluating the extent to which EGFR activity, in response to endogenous ligand, drives motility and migration of RPCs in retinal transplantation paradigms.
越来越多的研究正在评估视网膜祖细胞(RPC)移植作为修复视网膜变性和恢复视觉功能的一种方法。为了推进用于实际视网膜治疗的细胞替代策略,定义指导RPC运动的分子和生化机制很重要。我们分析了表皮生长因子受体(EGFR)在RPC中的表达,并评估了暴露于表皮生长因子(EGF)是否能在体外协调促运动活性。使用Boyden小室分析作为初始高通量筛选,我们确定EGF浓度在20 - 400 ng/ml范围内能最佳地刺激RPC运动,在更高浓度下刺激减弱,这表明EGF诱导的运动具有浓度依赖性。通过对视网膜特异性基因网络途径中的EGF配体进行生物信息学分析,我们预测EGF具有涉及MAPK和JAK - STAT细胞内信号通路的趋化功能。基于靶向抑制研究,我们表明配体结合、EGFR磷酸化以及细胞内STAT3和PI3激酶信号通路的激活是驱动RPC运动所必需的。使用工程微流控装置产生可量化的EGF稳态梯度并结合活细胞追踪,我们分析了单个RPC运动的动态。微流控分析,包括质心和最大累积距离,显示EGF诱导的运动是化学动力学的,在低浓度梯度下观察到最佳活性。我们的综合结果表明,在低纳摩尔水平的EGF存在下,表达EGFR的RPC表现出增强的化学动力学运动。这些发现可能有助于为进一步研究提供信息,以评估EGFR活性对内源性配体的反应在视网膜移植范例中驱动RPC运动和迁移的程度。