Barollo Michele, Contemori Giulio, Battaglini Luca, Pavan Andrea, Casco Clara
Department of General Psychology, University of Padova, Padova, Italy.
Neuro.Vis.U.S. Laboratory, University of Padova, Padova, Italy.
Restor Neurol Neurosci. 2017;35(5):483-496. doi: 10.3233/RNN-170731.
Amblyopic observers present abnormal spatial interactions between a low-contrast sinusoidal target and high-contrast collinear flankers. It has been demonstrated that perceptual learning (PL) can modulate these low-level lateral interactions, resulting in improved visual acuity and contrast sensitivity.
We measured the extent and duration of generalization effects to various spatial tasks (i.e., visual acuity, Vernier acuity, and foveal crowding) through PL on the target's contrast detection.
Amblyopic observers were trained on a contrast-detection task for a central target (i.e., a Gabor patch) flanked above and below by two high-contrast Gabor patches. The pre- and post-learning tasks included lateral interactions at different target-to-flankers separations (i.e., 2, 3, 4, 8λ) and included a range of spatial frequencies and stimulus durations as well as visual acuity, Vernier acuity, contrast-sensitivity function, and foveal crowding.
The results showed that perceptual training reduced the target's contrast-detection thresholds more for the longest target-to-flanker separation (i.e., 8λ). We also found generalization of PL to different stimuli and tasks: contrast sensitivity for both trained and untrained spatial frequencies, visual acuity for Sloan letters, and foveal crowding, and partially for Vernier acuity. Follow-ups after 5-7 months showed not only complete maintenance of PL effects on visual acuity and contrast sensitivity function but also further improvement in these tasks.
These results suggest that PL improves facilitatory lateral interactions in amblyopic observers, which usually extend over larger separations than in typical foveal vision. The improvement in these basic visual spatial operations leads to a more efficient capability of performing spatial tasks involving high levels of visual processing, possibly due to the refinement of bottom-up and top-down networks of visual areas.
弱视观察者在低对比度正弦波目标与高对比度共线侧翼刺激之间呈现出异常的空间相互作用。已有研究表明,知觉学习(PL)可以调节这些低水平的侧向相互作用,从而提高视敏度和对比敏感度。
我们通过对目标对比度检测的知觉学习,测量了对各种空间任务(即视敏度、游标视敏度和中央凹拥挤效应)泛化效应的程度和持续时间。
弱视观察者接受针对中央目标(即一个Gabor斑块)的对比度检测任务训练,该目标上下两侧各有两个高对比度Gabor斑块。学习前后的任务包括不同目标与侧翼刺激间距(即2、3、4、8λ)下的侧向相互作用,涵盖一系列空间频率、刺激持续时间,以及视敏度、游标视敏度、对比敏感度函数和中央凹拥挤效应。
结果显示,对于最长的目标与侧翼刺激间距(即8λ),知觉训练对目标对比度检测阈值的降低幅度更大。我们还发现知觉学习对不同刺激和任务具有泛化作用:对训练和未训练的空间频率的对比敏感度、对斯隆字母的视敏度、对中央凹拥挤效应,以及对游标视敏度有部分泛化作用。5 - 7个月后的随访结果表明,知觉学习对视敏度和对比敏感度函数的影响不仅完全得以维持,而且这些任务还有进一步改善。
这些结果表明,知觉学习改善了弱视观察者的促进性侧向相互作用,这种相互作用通常比典型的中央凹视觉延伸到更大的间距。这些基本视觉空间操作的改善导致执行涉及高水平视觉处理的空间任务的能力更高效,这可能是由于视觉区域的自下而上和自上而下网络的优化。